

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRÓ-REITORIA DE GRADUAÇÃO – PROGRAD COMITÊ DE GRADUAÇÃO

PARECER DO COMITÊ DE GRADUAÇÃO

Trata-se da apreciação do Projeto Pedagógico do Curso de Engenharia da Computação do Centro Multidisciplinar de Pau dos Ferros. O projeto analisado precisa ser atualizado para o formato atual estabelecido pelo Comitê de Graduação, além de alguns ajustes conforme observações abaixo:

- Na página 2, alterar o formato para o atual modelo de PPC onde só constam os nomes do(a) Reitor(a), Vice-Reitor(a), Pró-Reitor(a) de Graduação, Diretor(a) do Centro e Chefe do Departamento;
- 2. Algumas seções existem no PPC mas em local diferente do modelo estabelecido, verificar a possibilidade de realizar este ajuste;
- 3. Padronizar o uso do termo câmpus ou campus/campi;
- 4. Incluir página com os componentes do NDE, e sua respectiva portaria, como previsto pelo modelo atual de PPC;
- Incluir uma breve apresentação do documento, anterior ao Histórico da Universidade:
- 6. Alterar o **Histórico da Universidade** para o disponibilizado no modelo atual de PPC, incluindo a alteração no nome dado à seção;
- 7. No item Missão e Visão Institucional, alterar a referência para **PDI 2015- 2019** ao invés de Estatuto da UFERSA, conforme modelo atual de PPC;
- 8. Na página 14 incluir a RESOLUÇÃO Nº 1, DE 26 DE MARÇO DE 2021, do CNE e observar se todos os parâmetros foram atendidos no PPC;
- 9. Na página 24 é citada a presença de componentes curriculares eletivos e deve ser trocada por componentes curriculares optativo, uma vez que o SIGAA não contabiliza para integralização curricular componentes eletivos (verificar se isto ocorre no resto do texto);

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRÓ-REITORIA DE GRADUAÇÃO – PROGRAD COMITÊ DE GRADUAÇÃO

- 10. Em todo o texto há referências sobre disciplinas e componentes curriculares.
 Sugere padronizar para componente curricular, pois é mais amplo;
- 11. É interessante inverter a ordem do Colegiado de Curso e NDE, uma vez que o colegiado já é citado dentro do que está definindo o NDE (páginas 33 e 34);
- 12. Não fazer referência ao número da resolução para critérios de avaliação, visto que tais resoluções estão sempre em atualização (página 159);
- 13. Não há nenhuma indicação sobre disciplinas ofertadas na modalidade a distância. Sugere a possiblidade de ofertar pelo menos parte da carga horária das disciplinas optativas nessa modalidade (o PPC do CeT contém disciplinas optativas a distância, poderiam até ser estas);
- 14. Acrescentar no texto que após a regulamentação da carga horária de extensão na graduação, pela instituição, a coordenação do curso irá prover ações de extensão visando atender os 10% definidos no PNE.

Vimos que os pontos que foram apontados em análise anterior do Comitê de Graduação foram atendidos pela comissão e que o PPC enviado para nova apreciação atende à legislação atual para cursos Engenharia de Computação. Nesse sentido, indicamos pela **aprovação** do projeto pelo Comitê de Graduação condicionada às alterações propostas acima, acrescidas de outras observações indicadas pelos demais membros do Comitê de Graduação em sua reunião de avaliação.

Mossoró, 18 de outubro de 2021.

Projeto Pedagógico do Curso de Engenharia de Computação

Pau dos Ferros-RN 2021

Reitor:

Prof.^a Dr ^a Ludimilla Carvalho Serafim de Oliveira

Vice-Reitor:

Prof. Dr. Roberto Vieira Pordeus

Pró-Reitor de Graduação:

Prof. Dr. Sueldes de Araújo

Diretor do Centro Multidisciplinar de Pau dos Ferros:

Prof. Dr. Reudismam Rolim de Sousa

Chefe do Departamento de Engenharia e Tecnologia

Prof. Dr. Alex Pinheiro Feitosa

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRÓ-REITORIA DE GRADUAÇÃO

Coordenação do Curso

Prof. Dr. Cecílio Martins de Sousa Neto

Vice-Coordenação do Curso

Prof. Dr. Francisco Carlos Gurgel da Silva Segundo

Portaria UFERSA/GAB Nº 048/2021, de 27 de janeiro de 2021

COMISSÃO RESPONSÁVEL PELA PROPOSTA

Portaria UFERSA/GAB Nº 090/2018, de 24/ Maio de 2018.

Prof. Dr. Cecílio Martins de Sousa Neto

Automação Industrial

Prof. Dr. Ernano Arrais Júnior

Engenharia Elétrica

Prof. Dr. Francisco Carlos Gurgel da Silva Segundo

Engenharia Elétrica

Hortência Pessoa do Rêgo Gomes

Pedagogia

Prof. Me. Marco Diego Aurélio Mesquita

Ciência da Computação

Prof. Dr. Pedro Thiago Valério de Souza

Engenharia Elétrica

NÚCLEO DOCENTE ESTRUTURANTE

Portaria UFERSA/GAB Nº 180/2021, de 9 de agosto de 2021.

Prof. Dr. Cecílio Martins de Sousa Neto

Professor do Curso de Engenharia de Computação

Prof. Dr. Ádller de Oliveira Guimarães

Professor do Curso de Engenharia de Computação

Prof. Dr. Claudio Andrés Callejas Olguín

Professor do Curso de Engenharia de Computação

Prof. Dr. Francisco Carlos Gurgel da Silva Segundo

Professor do Curso de Engenharia de Computação

Prof. Dr. Hidalyn Theodory Clemente Mattos de Souza

Professor do Curso de Engenharia de Computação

Prof ^a. Dr ^a. Laysa Mabel de Oliveira Fontes

Professora do Curso de Engenharia de Computação

Prof. Dr. Lino Martins de Holanda Júnior

Professor do Curso de Engenharia de Computação

Prof. Dr. Pedro Thiago Valério de Souza

Professor do Curso de Engenharia de Computação

Sumário

1.	. AP	RESENTAÇÃO	8
	1.2	. Missão e Visão Institucional	11
	1.3	. Contextualização da área de conhecimento	12
	1.4	. Contextualização histórica do curso	12
2.	. FIN	IALIDADES, OBJETIVOS E JUSTIFICATIVAS DO CURSO	13
	2.1.	Finalidades	13
	2.2.	Objetivos	14
	2.3.	Justificativas (dimensões técnicas e políticas)	15
3.	. co	NCEPÇÃO ACADÊMICA DO CURSO	18
	3.1.	Formas de Ingresso	18
	3.2.	Articulação do curso com o Plano de Desenvolvimento Institucional	18
	3.2	.1. Políticas de Ensino, Pesquisa e Extensão	19
	3.2	.2. Políticas de Apoio discente	21
	3.3.	Áreas de atuação	23
	3.4.	Perfil profissional do egresso	23
	3.5.	Competências e habilidades	24
	3.6.	Coerência do currículo com as Diretrizes Curriculares Nacionais	25
	3.7.	Aspectos teóricos metodológicos do processo de ensino-aprendizagem	25
	3.8.	Estratégias de flexibilização curricular	28
4.	. OR	GANIZAÇÃO CURRICULAR DO CURSO	29
	4.1.	Matriz Curricular via Bacharelado em Tecnologia da Informação	е
	Bach	arelado em Ciência e Tecnologia	30
	4.2.	Eixo de Formação Básica	42
	4.3.	Eixo de Formação Profissionalizante	45
	4.4.	Eixo de Formação Específica	47
	4.5.	Componentes Curriculares Optativos	48
	4.6.	Trabalho de Conclusão de Curso	50
	4.7.	Atividades Complementares	50
	4.8.	Estágio Supervisionado	51
	4.9.	Representação Gráfica do Perfil Formativo	51

4.10.	Ementas e Bibliografias dos Componentes Definidos na	Estrutura
Curri	cular	54
5. AD	MINISTRAÇÃO ACADÊMICA	146
5.1.	Coordenação do curso	146
5.2.	Colegiado de Curso	146
5.3.	Núcleo Docente Estruturante	146
6. CO	PRPO DOCENTE	147
6.1.	Perfil docente	147
7. INF	FRAESTRUTURA	150
6.2.	Laboratório de Tecnologia da Informação (LTI)	151
6.3.	Laboratórios de Formação Geral	152
6.4.	Laboratório de Formação Específica	153
8. SIS	STEMÁTICA DE AVALIAÇÃO	153
8.1.	Avaliação e Acompanhamento no Âmbito do SINAES	154
8.2.	Avaliação e Acompanhamento no Âmbito do Colegiado de Curso	156
8.3.	Avaliação e Acompanhamento no Âmbito do Núcleo	Docente
Estru	turante	157
8.4.	Avaliação e Acompanhamento do Processo Ensino-Aprendizage	m158
8.5.	Critérios de Avaliação	160
9. RE	FERÊNCIAS BIBLIOGRÁFICAS	161

1. APRESENTAÇÃO

Neste documento é apresentado o Projeto Pedagógico do Curso de Engenharia de Computação da Universidade Federal Rural do Semi-Árido - UFERSA e contempla uma atualização que permite o ingresso de discentes oriundos do Bacharelado Interdisciplinar em Ciência e Tecnologia e Tecnologia da Informação.

1.1. Histórico da UFERSA

A Universidade Federal Rural do Semi-árido – UFERSA foi criada com objetivos de ministrar o ensino superior, desenvolver pesquisas nas diversas áreas do conhecimento e promover atividades de extensão universitária, em 01 de agosto de 2005, pela Lei nº 11.155, por transformação da Escola Superior de Agricultura de Mossoró - ESAM, instituição dedicada à educação superior, criada pela Prefeitura Municipal de Mossoró, através do Decreto nº 03/67, de 18 de abril de 1967 e incorporada à rede federal de ensino superior, como autarquia em regime especial por meio do Decreto nº 1.036, de 21/10/1969.

Contando com aproximadamente dez mil estudantes matriculados, distribuídos em quarenta e cinco cursos de graduação e quinze programas de pósgraduação¹, a instituição possui um *campus* central na cidade de Mossoró, cuja estrutura física é composta por edificações para fins didáticos, como bibliotecas especializadas; de pesquisas, como laboratórios; administrativos e residenciais. Ademais, a universidade dispõe de diversas instalações e equipamentos que viabilizam a oferta do ensino, da pesquisa e da extensão.

O processo de expansão regional em ensino, pesquisa e extensão da UFERSA iniciou-se em 2008, quando criado um *campus*, em Angicos-RN. Essa ampliação decorreu da adesão ao Programa de Reestruturação e Expansão das Universidades Federais – REUNI, lançado pelo Governo Federal, para que as universidades federais promovessem a ampliação da educação de ensino superior

¹ Dados relativos ao ano de 2018.1, informados pela PROGRAD e PROPPG.

em suas esferas físicas, acadêmicas e pedagógicas. O *campus* de Angicos oferta cursos de graduação nas áreas de Ciências Exatas, Humanas e Engenharias.

O processo de ampliação se estendeu para os anos de 2010 e 2011, quando, foram criados, respectivamente, os *campi* nas cidades de Caraúbas e Pau dos Ferros, ambas localizadas na região do Oeste Potiguar. Em Caraúbas, o *campus* oferta cursos nas áreas de Ciências Exatas, Engenharias e Letras. O *campus* de Pau dos Ferros tem atuação nas áreas de Ciências Exatas, Engenharias e Ciências Sociais Aplicadas. Esse processo de ampliação e interiorização tem gerado oportunidades de acesso à universidade em áreas profissionais até então existentes em grandes centros urbanos.

A UFERSA iniciou suas atividades na modalidade a distância a partir de 2010, com a criação do Núcleo de Educação à Distância - NEaD. Nele, são ofertados os cursos de licenciatura em Matemática, Computação, Física e Química. O núcleo conta com diversos polos de apoio presencial da Universidade Aberta do Brasil – UAB, os quais estão situados nas cidades de Natal, Caraúbas, Grossos, Guamaré, São Gonçalo do Amarante, Angicos, Pau dos Ferros e Mossoró.

Em observação às recomendações do Governo Federal para a educação superior, a UFERSA desenvolve, estrategicamente, ações que visam fortalecer socioeconomicamente seu entorno, adotando objetivos e metas que, alicerçados no orçamento disponível, permitem a ampliação do ensino superior com qualidade, o desenvolvimento de pesquisas científicas, bem como a inovação tecnológica com sustentabilidade.

Além disso, o Plano de Desenvolvimento Institucional – PDI vigente contempla estratégias/metas que visam fortalecer a qualidade do ensino, da pesquisa e da extensão, tríade que capacita os recursos humanos da instituição, melhora as condições de infraestrutura predial administrativa, laboratorial e de salas de aulas, como também a infraestrutura urbana e de comunicação da Universidade.

No que se refere ao ensino de graduação, o número de cursos e de vagas têm sido ampliados a cada ano. A partir disso, alguns procedimentos precisam ser considerados, como a atualização periódica de projetos pedagógicos desses cursos, a consolidação da política de estágios curriculares e aprimoramento das formas de ingresso e permanência nos cursos de graduação.

Mediante os Programas Residência Pedagógica e Programa Institucional de Bolsa de Iniciação à Docência - PIBID, a UFERSA tem oferecido bolsas para estudantes dos cursos de licenciatura e professores da educação básica, a fim de qualificar a prática docente. Isso sinaliza o compromisso e a preocupação desta instituição com a melhoria da educação básica. O PIBID está em execução desde 2009, com o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES. E, a partir de 2018, teve início o Programa Residência Pedagógica, cujo objetivo é incentivar e qualificar estudantes de licenciatura, em sua prática docente, nas escolas da rede pública e, ao mesmo tempo, compartilhar com essas escolas as atualizações na área de educação que são produzidas no interior da universidade. Também, através do Programa Nacional de Assistência Estudantil – PNAES, a UFERSA tem prestado assistência ao estudante, concedendo bolsas e auxílios nas mais diferentes modalidades.

Na área de pesquisa e ensino de pós-graduação, como forma de consolidar novos cursos, a UFERSA tem aderido a programas de governo, como o Programa Nacional de Cooperação Acadêmica -PROCAD e o Programa Nacional de Pós-Doutorado - PNPD. A instituição busca estimular a participação de estudantes na pós-graduação, a qualificação docente, o apoio aos comitês de ética em pesquisa, bem como a recuperação e ampliação da infraestrutura de pesquisa e pós-graduação.

Quanto à sua função extensionista, a UFERSA tem buscado incentivar e apoiar ações que se pautem em elementos, como desenvolvimento regional e sustentabilidade, educação ambiental, agroecologia, desenvolvimento de tecnologias sociais, diversidade cultural, inovação tecnológica e economia solidária. Além disso, implantou o programa institucional de bolsas de extensão, como forma de definir e operacionalizar a política de bolsas de extensão na UFERSA. Ademais, tem apoiado atividades cujo desenvolvimento implique em relações multidisciplinares, interdisciplinares e/ou transdisciplinares de setores da universidade e da sociedade e realizado convênios com entidades públicas e privadas para concessão de estágios.

Destarte, a UFERSA se configura como importante centro de produção e difusão de conhecimento por meio de suas atividades acadêmicas, reconhecendose como universidade pública e de qualidade, investida da missão de contribuir para o exercício pleno da cidadania, mediante a formação humanística, crítica e

reflexiva, preparando profissionais capazes de atender às demandas da sociedade.

1.2. Missão e Visão Institucional

A missão da UFERSA é produzir e difundir conhecimentos no campo da educação superior, com ênfase para a região semiárida brasileira, contribuindo para o desenvolvimento sustentável e o exercício pleno da cidadania, mediante formação humanística, crítica e reflexiva, preparando profissionais capazes de atender demandas da sociedade (PDI 2015-2019).

1.1 Dados de Identificação do Curso

Dados da Instituição Proponente					
Instituição: Universidade Federal Rural do Semi-Árido					
CNPJ: 24529265000140	CNPJ: 24529265000140				
Endereço: BR 226, s/n					
Cidade: Pau dos Ferros	UF : RN CEP : 59900.000 Telefone : (84) 3317-8512				
Dados do	Responsável pela Instituição Proponente				
Reitor: Prof ^a . Dr ^a . Ludimi	la Carvalho Serafim de Oliveira (REITORA)				
Telefone: (84)3317-8225 E-mail: reitora@ufersa.edu.br / ludimilla@ufersa.edu.br					
Dados do Responsável pelo Projeto					
Pró-Reitor de Graduação: Prof. Dr.Sueldes de Araújo					
Telefone: (84) 3317-8234	E-mail: prograd@ufersa.edu.br/				
	sueldes.araujo@ufersa.edu.br				
Identificação do Curso					
Curso: Engenharia de Computação					
Modalidade do Curso: Bacharelado					
Habilitação: Engenharia de Computação					

Título Acadêmico Conferido: Bacharel em Engenharia de Computação

Modalidade de Ensino: Presencial

Regime de Matrículas: Crédito

Carga Horária do Curso: 3.670 h

Número de vagas anual: 60 vagas

Número de turmas: 01 turma por semestre

Turno de funcionamento: Diurno

Forma de ingresso: Edital de processo seletivo para egressos do curso Interdisciplinar

em Ciência e Tecnologia e Tecnologia da Informação.

1.3. Contextualização da área de conhecimento

A partir dos desenvolvimentos tecnológicos, a computação está cada vez mais presente e essencial no mundo moderno, a partir daí, surge a necessidade dos cursos de Engenharia de Computação. Comparada com outras áreas, a história da Engenharia de Computação é muito recente, a sua criação remete ao início dos anos 70 quando universidades no mundo optaram por unir os cursos de Engenharia Elétrica e Ciência da Computação.

O surgimento dos cursos de Engenharia de Computação no Brasil foi concebido a partir de especializações nos cursos de Engenharia Elétrica em conjunto com disciplinas do curso de Ciência da Computação. O crescimento vertiginoso e a carência de profissionais da área fizeram surgir diversos cursos de Engenharia de Computação. O primeiro curso criado no Brasil foi em 1985 no Instituto Militar de Engenharia (IME) (LUCENA, 2005).

1.4. Contextualização histórica do curso

A criação do curso de Engenharia de Computação na UFERSA passa pela criação do próprio *Campus*, o qual em 18 de Abril de 2012 foi pactuado junto ao Ministério da Educação a criação do *campus* na cidade de Pau dos Ferros.

Dois anos após a criação do *campus*, a Portaria nº 646, de 30 de outubro de 2014 do SERES autoriza a abertura do curso Engenharia de Computação no *campus* Pau dos Ferros, que iniciou suas atividades no dia 16 de março de 2015, primeiro dia letivo do semestre 2015.1. Atualmente o curso conta com 33 docentes, sendo 24 doutores e 9 mestres, que são compartilhados com o curso de Bacharelado Interdisciplinar em Ciência e Tecnologia e Tecnologia da Informação.

O curso de Engenharia de Computação na UFERSA campus Pau dos Ferros é de suma importância para a Região Oeste do estado do Rio Grande do Norte, pois a cidade de Pau dos Ferros está situada em uma região privilegiada fazendo fronteira com os estados da Paraíba e Ceará dos quais tem-se diversos alunos, além de outros oriundos de outros estados e regiões do próprio Rio Grande do Norte. Assim, o curso de Engenharia da Computação supre uma carência tanto na região oeste do estado do Rio Grande do Norte como também dos estados vizinhos fazendo com que estes alunos não se desloquem para os grandes centros no intuito de cursar uma graduação nessa área.

2. FINALIDADES, OBJETIVOS E JUSTIFICATIVAS DO CURSO

Nas seções seguintes são apresentados os objetivos, finalidades e justificativas do curso de Engenharia de Computação.

2.1. Finalidades

A finalidade do curso de Engenharia de Computação da UFERSA campus Pau dos Ferros é produzir e difundir conhecimentos na área de computação e automação em nível de educação superior, formando profissionais cientes da sua importância e do seu papel de profissional e cidadão conscientes dos aspectos sociais, culturais, ambientais e tecnológicos que venham potencializar o desenvolvimento da região semiárida, em especial a região do Oeste Potiguar, considerando o âmbito global.

Desse modo, espera-se que a região do oeste potiguar possua a capacidade pessoal e tecnológica para a aplicação de sistemas modernos nos diversos âmbitos econômicos e sociais da região, otimizando o consumo de energia, matérias-primas e recursos naturais, alguns extremamente escassos, como a água. O impacto da tecnologia de informação e automação também poderá influenciar a sociedade, melhorando a qualidade de vida da população como um todo.

2.2. Objetivos

Segundo as Diretrizes Curriculares Nacionais para os cursos de graduação em Engenharia descritas pela Resolução CNE/CES nº 2/2019, pelas Diretrizes Curriculares Nacionais para os cursos de graduação de Computação descritas no Parecer CNE/CES nº 136/2012 e pela Resolução CNE/CES nº 5, de 16 de novembro de 2016, tais cursos devem objetivar a formação profissional para o desenvolvimento de sistemas de eletrônica de consumo, de comunicações e de automação (industrial, bancária e comercial), sistemas de computação embarcados em aviões, satélites e automóveis, para realizar funções de controle. Além disso, uma gama de sistemas tecnologicamente complexos depende dos sistemas de automação desenvolvidos pelos Engenheiros de Computação.

Desse modo, no intuito de atender ao descrito nas Diretrizes Curriculares, o Bacharelado em Engenharia de Computação da UFERSA *campus* Pau dos Ferros tem como objetivos:

- Formar profissionais críticos, ativos, cientes do seu papel social e capazes de utilizar os conhecimentos da área de automação na detecção e resolução de problemas sociais relacionados à localidade em que vivem.
- Fomentar a vivência dos discentes com situações pedagógicas que viabilizem a articulação entre os conhecimentos teóricos e suas respectivas práticas.
- Buscar a formação de profissionais qualificados, cujo perfil esteja relacionado ao ambiente de atuação dos mesmos.

2.3. Justificativas (dimensões técnicas e políticas)

Este documento atualiza o projeto pedagógico do curso de Engenharia de Computação da UFERSA e, em virtude da mudança na estrutura curricular do curso Interdisciplinar em Ciência e Tecnologia e da necessidade de possibilitar ao curso de Engenharia de Computação acolher discentes egressos do curso de Bacharelado em Tecnologia da Informação.

O curso de Engenharia de Computação combina conhecimentos de Engenharia Eletrônica e de Computação, no intuito de formar profissionais capazes de projetar, desenvolver e implantar sistemas integrados de *hardware* e de *software*, de ferramentas para sua utilização e de soluções finais para usuários de sistemas computacionais. Dessa forma, o engenheiro de computação pode atuar em quase todas as áreas de trabalho, como por exemplo, empresas e indústrias usuárias de informática, grupos financeiros, centros de pesquisa e de desenvolvimento, universidades, estabelecimentos de ensino e serviços públicos, dentre outros.

Diante disso, a existência do curso de Engenharia de Computação no âmbito da UFERSA *campus* Pau dos Ferros pode ser justificada pelos seguintes aspectos:

Amplo Mercado de Trabalho: O recente avanço nas áreas de microeletrônica, mecatrônica, telecomunicações e desenvolvimento de software tem ocasionado uma forte tendência à incorporação de aspectos de inovação tecnológica nos mais diversos tipos de ambientes existentes (hospitais, residências, indústrias, dentre outros), o que acarreta na demanda por profissionais capacitados a projetar e desenvolver sistemas de automação que possam ser incorporados nesses ambientes. De acordo com a Estratégia Nacional de Ciência, Tecnologia e Inovação (ENCTI) 2016-2019, uma ação prioritária é o estímulo à formação de engenheiros para atuação em Pesquisa, Desenvolvimento e Inovação, visando a formação de recursos humanos especializados e a geração de empregos de elevado padrão (MCTI, 2016). Diante disso, a implantação do curso de Engenharia de

Computação na UFERSA campus Pau dos Ferros é necessário, uma vez que atenderá às demandas de mercado existentes, na medida em que os profissionais formados estarão dotados de conhecimentos e habilidades para atuar no projeto, análise e desenvolvimento de sistemas de automação, principalmente em áreas onde existe forte integração entre software e hardware (automação industrial, sistemas paralelos e distribuídos, arquitetura de computadores, sistemas embarcados, robótica, mecatrônica, comunicação de dados, processamento digital de sinais, entre outras);

- Carência de instituições em âmbito regional que oferecem formação no curso: Em relação ao seu perfil de formação, o Engenheiro de Computação é um profissional diferenciado, pois, enquanto os demais profissionais de Computação e Informática trabalham apenas com dados (grandezas geradas, processadas e utilizadas por computadores), os engenheiros de computação trabalham também com sinais (informações geradas externamente e/ou produzidas para atuar sobre o meio externo), o que lhes permite desenvolver sistemas os quais os computadores não são os únicos agentes que influenciam o meio. Dessa forma, além de atender às demandas existentes no mercado, a implantação do curso de Engenharia de Computação na UFERSA campus Pau dos Ferros tornase significativa, pois, na esfera regional de acordo com o portal e-MEC (MEC, 2017), a única instituição de ensino superior pública do Rio Grande do Norte que oferece formação nesse curso é a Universidade Federal do Rio Grande do Norte (UFRN) em seu Campus situado na cidade de Natal/RN, distante 450 km da cidade de Pau dos Ferros;
- Fácil integração com outras áreas de conhecimento: Conforme dito, os recentes avanços tecnológicos vêm ocasionando a incorporação de aspectos de inovação dentro dos mais diversos tipos de ambientes, o que torna a computação uma área bastante presente nas pesquisas desenvolvidas nos mesmos. Em particular, de acordo com a ENCTI, tecnologias da computação como Big Data, Computação em Nuvem e Internet das Coisas possuem aplicações em áreas que fazem parte dos temas estratégicos de Economia e Sociedade Digital, Tecnologias

Convergentes e Habilitadoras e de Energia com aplicações em saúde, logística, transportes, segurança, varejo e manufatura avançada (MCTI, 2016). Dessa forma, outro fator que torna o curso de Engenharia de Computação na UFERSA *Campu*s Pau dos Ferros importante, corresponde à fácil integração com outras áreas de conhecimento, o que facilitará a criação de cursos de pós-graduação, por exemplo;

- Possibilidade de firmar e consolidar parcerias entre as instituições de ensino superior existentes na região: Atualmente, além da UFERSA, o município de Pau dos Ferros possui um Campus do Instituto Federal de Educação, Ciência e Tecnologia (IFRN) e um Campus da Universidade do Estado do Rio Grande do Norte (UERN) que ofertam cursos de nível técnico e superior em diversas áreas distintas (exatas, humanas, tecnológicas, dentre outras). Dessa forma, tendo em vista a fácil integração que a computação possui com as demais áreas de conhecimento, outro aspecto que justifica o curso de Engenharia de Computação na UFERSA campus Pau dos Ferros, corresponde a possibilidade de efetuar parcerias com as instituições de ensino superior existentes na região, com a finalidade de desenvolver e proporcionar aos discentes, docentes e colaboradores a possibilidade de participarem de atividades e projetos de pesquisa e de extensão, bem como a consequente criação de cursos de pós-graduação;
- Fácil integração com os Bacharelados Interdisciplinares em Ciência e Tecnologia (BICT) e em Tecnologia da Informação (BITI): Considerando que o ingresso dos discentes no curso de Engenharia de Computação será feito através do Bacharelado em Tecnologia da Informação e também em Ciência e Tecnologia. Levando em conta os referenciais curriculares nacionais que regem os cursos de bacharelado e licenciatura, é perceptível que os componentes curriculares definidos no Bacharelado em Tecnologia da Informação abordam grande parte dos temas exigidos pelos referidos referenciais na formação de Graduados em Engenharia de Computação.
- Fácil implantação da infraestrutura necessária para a criação e manutenção do curso: Os referenciais curriculares nacionais dos cursos de bacharelado e licenciatura definem a infraestrutura

necessária à implantação dos cursos de Engenharia de Computação em termos de laboratórios e de acervo na biblioteca. Dessa forma, em relação aos laboratórios citados nos referidos referenciais, existe a possibilidade de reduzir a quantidade dos mesmos, uma vez que grande parte dos objetos de estudo (computadores, dispositivos eletrônicos, dispositivos de conexão de redes, entre outros) utilizados é similar na grande maioria deles.

3. CONCEPÇÃO ACADÊMICA DO CURSO

Nesta seção são apresentados os aspectos relacionados à formatação do Curso de Graduação em Engenharia de Computação a partir de suas características acadêmicas.

3.1. Formas de Ingresso

O ingresso no curso de Engenharia de Computação da UFERSA campus Pau dos Ferros é feito mediante entradas semestrais de 30 vagas a partir da obtenção do título de Bacharel em Tecnologia da Informação, de acordo com a decisão 171/2014 do CONSUNI de 19 de dezembro de 2014 e pelos egressos do curso de Ciência e Tecnologia da UFERSA, conforme critérios de seleção definidos pela Pró-Reitoria de Graduação. As vagas ociosas serão ocupadas por processos seletivos específicos para reingresso, reopção, transferência e portador de diploma, conforme legislação vigente.

3.2. Articulação do curso com o Plano de Desenvolvimento Institucional

A concepção acadêmica do projeto pedagógico do curso de engenharia de computação baseia-se em um processo de ensino e aprendizagem, tendo como objeto de seus componentes curriculares, a prática como intenção de convergência de conteúdos conceituais, críticos, analíticos e propositivos. Desta

forma, resultando na consolidação de habilidades e competências, sendo o discente o principal agente deste processo.

Com base nesse contexto, no presente documento é apresentado o projeto pedagógico do curso de Engenharia de Computação da UFERSA campus Pau dos Ferros, demonstrando seus aspectos pedagógicos e políticos, visando estabelecer as estratégias para a formação do profissional que se deseja. Este projeto pedagógico de curso foi elaborado em consonância com os objetivos e missão da UFERSA, descritos no Projeto de Desenvolvimento Institucional (PDI) (UFERSA, 2015) e com os princípios pedagógicos, políticos e filosóficos que norteiam o seu Projeto Pedagógico Institucional (PPI) (UFERSA, 2019).

3.2.1. Políticas de Ensino, Pesquisa e Extensão

O PPC do curso de Engenharia de Computação da UFERSA campus Pau dos Ferros prevê a inserção, participação e incentivo dos discentes em projetos de ensino, pesquisa e de extensão na região em que o curso está implantado, o semiárido nordestino, considerando as realidades local, regional e global. Dessa forma, objetivando ampliar as atuações do curso no âmbito da pesquisa e extensão, algumas atividades são desenvolvidas pelos discentes com o apoio dos docentes e coordenação do Curso de Engenharia de Computação:

Extensão: Nas atividades de extensão, o curso de Engenharia de Computação vem se empenhando na busca por apoio de instituições públicas ou privadas da região para a melhoria do seu pessoal, por meio de cursos de aperfeiçoamento e especialização fora de sede, sempre em parceria com empresas ou instituições de ensino. Além disso, o seu corpo docente tem contribuído na criação de eventos locais de natureza continuada, tais como o Encontro de Computação do Oeste Potiguar (ECOP) e a Olimpíada de Programação, com suas primeiras edições realizadas em 2016 e 2017, respectivamente, o Webinar em Teoria da Computação, Lógica e Matemática Fuzzy, com primeira edição em 2017. Em se tratando do ECOP, este é um evento local que contempla palestras, minicursos, mesas redondas, chamadas de trabalhos científicos,

competições e apresentações culturais, tendo como público alvo os discentes dos cursos das áreas de Computação e Ciência e Tecnologia (ECOP, 2017). A Olimpíada de Programação também se trata de um evento local destinado aos discentes da área de Computação, porém com ênfase específica na aplicação dos conhecimentos técnicos lógica, programação e resolução de problemas computacionais por grupos de discentes da UFERSA. Além disso, o corpo docente do curso Engenharia de Computação ampliou seu campo de atuação na extensão e pretende implantar um programa de transferência tecnológica que permita capacitar profissionais, empresas e instituições da região para enfrentarem os desafios de uma economia globalizada e as necessidades de inovação tecnológica, visando atender a regulamentação da carga horária de extensão na graduação, conforme definidos pelo Plano Nacional de Educação (PNE). Além das atividades citadas, o curso reconhece a importância do empreendedorismo, por isso, estimula os discentes a participarem de competições com essa temática, submeter proposta de negócio junto a incubadoras. Com relação a incubadora, na UFERSA campus Pau dos Ferros, foi instalado o Núcleo de Incubação Tecnológico e Social (NITS) com os professores do curso atuando diretamente na sua implantação e manutenção.

Pesquisa: Na pesquisa, o corpo docente de Engenharia de Computação vem desenvolvendo projetos, por exemplo, nas áreas de Análise de Sinais Biomédicos, Sistemas Dedicados (Microeletrônica) e Automação Industrial, Sistemas de Software e Sistemas de Informação, estabelecendo atualmente parcerias com outros cursos de graduação do Centro Multidisciplinar - Pau dos Ferros (CMPF/UFERSA) para criação de projetos de pesquisa multidisciplinares. Tais projetos, em sua maioria, estão associados ao grupo de pesquisa intitulado de "Grupo de Desenvolvimento e Simulação", grupo este certificado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), e que atualmente conta com a participação de 09 docentes, que juntamente com seus alunos desenvolvem projetos nas seguintes linhas de pesquisa: Eficiência Energética, Fontes Alternativas Renováveis e Planejamento Energético e Energias Renováveis; Fundamentos da Computação e Lógica, Hardware e

Simulação, Microeletrônica, Processamento Digital de Sinais, e; Sistemas Médicos Físicos Cibernéticos (CNPQ, 2017). Todas essas atividades redundam em produção de artigos técnicos/científicos, elaboração de novos projetos e planos, preparação de aulas, atendimento discente extraclasse, participação em reuniões de projetos e reuniões regimentais (colegiados), participação (organização) em eventos técnico-científicos e bancas de avaliação de teses e dissertações, além de manutenção de atualização (leituras e estudos individuais). Faz parte também do esforço do corpo docente a busca por sediar a cada ano 01 evento científico de caráter regional ou nacional.

3.2.2. Políticas de Apoio discente

A UFERSA campus Pau dos Ferros dispõe de diversos serviços, formados por profissionais de diferentes áreas que oferecem apoio aos discentes dos cursos ofertados no referido campus. A interação desses profissionais com a coordenação do curso de Engenharia da Computação é realizada de forma contínua, no intuito de garantir o bem-estar e a permanência de todos os envolvidos no funcionamento e operação da Engenharia da Computação. Dessa forma, tais serviços são:

- Coordenação de Assuntos Estudantis: A coordenação de assuntos estudantis é destinada a fornecer mecanismos de incentivo à permanecia dos discentes na Universidade, especialmente dos que estão em situação de vulnerabilidade socioeconômica, durante o tempo regular do curso na UFERSA, mediante a concessão de auxílios e bolsas. Nesse ponto, tal coordenação é responsável pelo acompanhamento das atividades de seleção, distribuição e acompanhamento de bolsas e auxílios na UFERSA campus Pau dos Ferros;
- Assistência social: O serviço de assistência social da UFERSA campus
 Pau dos Ferros é responsável por atuar na detecção e resolução de
 problemas ligados a educação, habilitação, emprego e saúde dos
 discentes, procurando promover o bem-estar físico, psicológico e social dos
 mesmos e, consequentemente, sua permanência na universidade;

• Apoio psicológico: A UFERSA campus Pau dos Ferros dispõe de auxílio psicológico, responsável por atuar na detecção, prevenção e tratamento de eventuais doenças mentais, distúrbios emocionais e de personalidade que podem acometer os discentes. Em se tratando particularmente de auxílio psicológico, vale ressaltar que o mesmo fornece também serviços aos servidores da Instituição, no sentido de promover e garantir o bem-estar dos mesmos, o que se constitui em um fator de suma importância para o provimento e manutenção da qualidade do curso.

Além dos serviços citados, vale ressaltar que a UFERSA também possui a Coordenação Geral de Ação Afirmação, Diversidade e Inclusão Social (CAADIS), institucionalizada por meio da legislação interna presente nas resoluções CONSUNI/UFERSA nº 005/2012 e CONSUNI/UFERSA nº 003/2014, a qual é voltada ao desenvolvimento de políticas de acessibilidade dos discentes no âmbito da Universidade. As primeiras ações dessa coordenação são destinadas especificamente para a acessibilidade de pessoas com necessidades educacionais especiais, especialmente em relação à acessibilidade arquitetônica. Desse modo, a UFERSA campus Pau dos Ferros teve a preocupação em adequar os espaços físicos com foco na acessibilidade e hoje, em fase de consolidação, tem buscado as condições físicas, materiais e humanas para o atendimento especializado de estudantes com necessidades especiais que porventura venham a ingressar nos cursos oferecidos no campus.

Com objetivo de incentivar e apoiar ao discente, a UFERSA disponibiliza uma variedade de bolsas e auxílios financeiros para os discentes que necessitam de suporte para sua permanência na universidade, bem como bolsas por mérito acadêmico. Seguindo o Programa Institucional de Permanência as bolsas disponibilizadas são:

- Auxílio Transporte;
- Auxílio Portador de Necessidades Especiais
- Auxílio Creche
- Auxílio Didático-Pedagógico
- Bolsa Permanência Acadêmica (Atividade);

Bolsa Esporte.

As bolsas por mérito acadêmico destinadas aos alunos selecionados e vinculados a projetos ou monitoria de disciplinas são:

- Bolsa PIBIC;
- Bolsa Extensão;
- Bolsa de Ensino.

Além dos auxílios e bolsas, a UFERSA conta com a residência universitária e o restaurante universitário.

3.3. Áreas de atuação

Em consonância com os referenciais curriculares nacionais dos cursos de bacharelado e licenciatura, o profissional formado pela UFERSA *campus* Pau dos Ferros, terá competências e habilidades para atuar nos seguintes ambientes:

- Setor de tecnologia da informação;
- Empresas de telecomunicações, de planejamento e desenvolvimento de equipamentos e sistemas computacionais;
- Empresas de automação de processos industriais e computacionais;
- Empresas e laboratórios de pesquisa científica e tecnológica;
- Prestação de consultoria ou empresa própria.

3.4. Perfil profissional do egresso

O perfil de egresso do curso de Engenharia de Computação da UFERSA campus Pau dos Ferros é o mesmo definido pela Resolução CNE/CES Nº 5/2016 que institui em seu Art. 4º §2º o seguinte encaminhamento: Levando em consideração a flexibilidade necessária para atender domínios diversificados de aplicação e as vocações institucionais, espera-se que os egressos dos cursos de Engenharia de Computação:

 possuam sólida formação em Ciência da Computação, Matemática e Eletrônica visando à análise e ao projeto de sistemas de computação, incluindo sistemas voltados à automação e controle de processos industriais e comerciais, sistemas e dispositivos embarcados,

- sistemas e equipamentos de telecomunicações e equipamentos de instrumentação eletrônica;
- conheçam os direitos e propriedades intelectuais inerentes à produção e à utilização de sistema de computação;
- III. sejam capazes de agir de forma reflexiva na construção de sistemas de computação, compreendendo o seu impacto direto ou indireto sobre as pessoas e a sociedade;
- IV. entendam o contexto social no qual a Engenharia é praticada, bem como os efeitos dos projetos de Engenharia na sociedade;
- V. considerem os aspectos econômicos, financeiros, de gestão e de qualidade, associados a novos produtos e organizações;
- VI. reconheçam o caráter fundamental da inovação e da criatividade e compreendam as perspectivas de negócios e oportunidades relevantes.

3.5. Competências e habilidades

De acordo com o parecer CNE/CES 136/2012 e a RESOLUÇÃO CNE/CES Nº 5/2016, os cursos de bacharelado em Engenharia de Computação devem prover uma formação profissional que revele, pelo menos, as seguintes habilidades e competências:

- Planejar, especificar, projetar, implementar, testar, verificar e validar sistemas de computação (sistemas digitais), incluindo computadores, sistemas baseados em microprocessadores, sistemas de comunicações e sistemas de automação, seguindo teorias, princípios, métodos, técnicas e procedimentos da Computação e da Engenharia;
- Compreender, implementar e gerenciar a segurança de sistemas de computação;
- Gerenciar projetos e manter sistemas de computação;
- Conhecer os direitos e propriedades intelectuais inerentes à produção e à utilização de sistemas de computação;
- Desenvolver processadores específicos, sistemas integrados e sistemas embarcados, incluindo o desenvolvimento de software para esses sistemas;

- Analisar e avaliar arquiteturas de computadores, incluindo plataformas paralelas e distribuídas, como também desenvolver e otimizar software para elas:
- Projetar e implementar software para sistemas de comunicação;
- Analisar, avaliar e selecionar plataformas de hardware e software adequados para suporte de aplicação e sistemas embarcados de tempo real;
- Analisar, avaliar, selecionar e configurar plataformas de hardware para o desenvolvimento e implementação de aplicações de software e serviços;
- Projetar, implantar, administrar e gerenciar redes de computadores;
- Realizar estudos de viabilidade técnico-econômica.

3.6. Coerência do currículo com as Diretrizes Curriculares Nacionais

O projeto pedagógico de curso apresentado é baseado nas Diretrizes Curriculares Nacionais para os Cursos de Engenharia (Resolução CNE/CES n.2/2019 de 24 de abril de 2019, Resolução CNE/CES n.1/2021 de 26 de março de 2021) e nos Referenciais Orientadores para os Bacharelados Interdisciplinares e Similares de novembro de 2010. Portanto, os componentes os componentes curriculares estão da seguinte maneira:

- Núcleo de conteúdos comuns obrigatórios;
- Trabalho de Conclusão de Curso;
- Disciplinas Optativas;
- Atividades Complementares.

O curso de Engenharia de Computação, oferecido no turno diurno, tem uma duração de 10 períodos letivos semestrais, tendo uma carga horária de 3.670 horas, divididas em 3.420 horas de componentes curriculares obrigatórias, 90 h de atividades complementares e 160 h de estágio supervisionado.

3.7. Aspectos teóricos metodológicos do processo de ensinoaprendizagem

Conforme descrito na Resolução CNE/CES 2/2019, o projeto pedagógico

de cursos de graduação em engenharia deve demonstrar claramente como o conjunto de atividades previstas garantirá a formação dos discentes dentro do perfil de egresso desejado. Diante disso, as seguintes atividades podem ser sugeridas:

- Estruturação dos componentes curriculares visando abordar os temas exigidos pelos Referenciais Curriculares Nacionais quanto à formação de Engenheiros de Computação;
- Formatação da estrutura curricular com o desígnio de proporcionar a integração entre componentes curriculares distintos situados em uma mesma fase, ou em fases diferentes do curso;
- Organização de laboratórios que permitam a simulação de situações que podem ocorrer nos ambientes de atuação dos Engenheiros de Computação;
- Viabilização de estágios junto às instituições locais e regionais;
- Realização de atividades extracurriculares e/ou complementares que ofereçam aos discentes maiores informações e conhecimentos acerca das atividades exercidas pelos Engenheiros de Computação nos seus respectivos ambientes de atuação.

As estratégias pedagógicas adotadas consistem fundamentalmente no ensino de teorias e práticas. Estes conceitos são normalmente ministrados por meio de aulas expositivas e práticas com o desenvolvimento de atividades em campo e/ou laboratórios. Atividades extracurriculares e fora do ambiente acadêmico são importantes para apoiar o processo de aprendizagem, e, consequentemente, também relacionados com conteúdo teóricos e práticos abordados.

Os aspectos metodológicos referentes ao processo de ensinoaprendizagem têm como ênfase um trabalho pedagógico de docentes e discentes, com os conhecimentos específicos das diversas áreas de formação, que considera os processos que possibilitam os discentes a alcançarem os resultados de desenvolvimento intelectual, profissional e pessoal, favorecendo a progressão de novos conhecimentos dentro de cada área.

A abordagem exige que o docente parta de conhecimentos cotidianos dos

discentes, aprofunde os conceitos teóricos e científicos com eles e busque como resultado o desenvolvimento de competências, habilidades e atitudes destes ao longo do curso. Buscar o desenvolvimento de competências, habilidades e atitudes não pode ser concebido como um esvaziamento do conteúdo, em favor de um trabalho centrado nas experiências e nos desejos dos discentes. Por sua vez, o conteúdo também não pode ser concebido como um instrumento de motivação da aprendizagem do discente. Pelo contrário, o conteúdo a ser trabalhado deve ser considerado como um conjunto de conceitos teóricos, sistematicamente relacionados, concebidos com base no conhecimento acumulado pelos pesquisadores da área ao longo da história. Assim considerado, o conteúdo é fortalecedor da capacidade de organização hierárquica dos conceitos e do pensamento dos discentes, bem como de suas habilidades de lidar com ele nas situações cotidianas, tanto técnicas, acadêmicas, como éticas.

A partir dessa abordagem, o curso incentiva o protagonismo estudantil no processo de ensino-aprendizagem. O que se propõe ao discente, inclusive no âmbito das Diretrizes Curriculares Nacionais (DCN) é que seja ativo no desenvolvimento das habilidades, competências e atitudes. As metodologias de ensino devem favorecer esse protagonismo, utilizando-se de técnicas consideradas ativas, como pesquisa, resolução de problemas, estudos de caso, entre outras que poderão ser desenvolvidas. Essa abordagem pedagógica cria condições para o desenvolvimento da capacidade do discente de "aprender a aprender" (COLL, 1994, p. 136), incentivando-o à busca de informação e da formação continuada exigida para a sua atuação na sociedade.

Diante do exposto, entende-se que o modo como o docente compreende o processo de ensino e aprendizagem permitirá o desenvolvimento do discente. Docente, conteúdo e discente desempenham papéis fundamentais e complementares. O papel do discente no processo de aprendizagem é um papel ativo. Os docentes são orientados a desenvolverem um trabalho que confirme os valores de formação integral do homem, que deve se responsabilizar pelos seus atos, agir com responsabilidade e com princípios de sustentabilidade no uso de recursos da natureza e que deve agir em direção ao outro, com respeito e valorização pelo outro.

Assim, as práticas de ensino desenvolvidas devem considerar as metodologias de ensino ativas que promovam o desenvolvimento de competências e habilidades requeridas na formação integral do educando e na sua formação para o trabalho, nas diversas carreiras de nível superior (MORAN, 2015). Entre as metodologias ativas que serão utilizadas são:

- Aprendizagem Baseada em Problemas;
- Aprendizagem Baseada em Projetos.

Outro aspecto importante no desenvolvimento do ensino é a integração, simultânea, entre teoria e prática. Isso deve ser revelado pelas estratégias utilizadas, desde a proposição dos objetivos de aprendizagem expressos nos Planos de Ensino, de maneira a declararem a interrelação de competências e habilidades, até o desenvolvimento das atividades de aprendizagem na aula, que utilizem estratégias que promovam a articulação entre o saber fazer e o saber conhecer do discente além de desenvolverem atitudes específicas na direção do saber ser.

Assim, o processo de ensino e aprendizagem ganha relevância. O ensino não será centrado no docente, apesar de sabermos que é ele que articula inicialmente os saberes e a prática ao planejar sua aula; mas não é também centrado no ativismo do discente. Há uma articulação entre os saberes da área, os saberes do docente e as ações do discente com estes saberes no processo de se apropriar e conhecer e de desenvolver suas competências.

3.8. Estratégias de flexibilização curricular

O PPC do curso de Engenharia de Computação da UFERSA campus Pau dos Ferros permite a flexibilidade curricular mediante a existência de componentes curriculares optativos e de atividades complementares obrigatórias em sua estrutura. Dessa forma, por meio desses componentes e atividades, é possível ao discente construir sua identidade profissional de acordo com seus interesses, dentro de uma matriz curricular que lhe convenha.

4. ORGANIZAÇÃO CURRICULAR DO CURSO

A estrutura curricular descrita nesse PPC foi elaborada no intuito de proporcionar a formação dos discentes nas seguintes dimensões:

- Fundamentos das ciências exatas, humanas e naturais;
- Conhecimentos básicos relacionados à engenharia;
- Conteúdos fundamentais de computação, eletrônica e eletricidade;
- Arquitetura dos sistemas computacionais (componentes físicos e lógicos e aplicações da computação em vários problemas de engenharia).

Dessa forma, em conformidade à resolução CONSEPE/UFERSA nº 003/2006, a estrutura curricular do curso de Engenharia de Computação da UFERSA adota o regime de créditos. Além disso, para oportunizar a entrada no curso de Engenharia de Computação pelos discentes egressos dos cursos de Bacharelado Interdisciplinar em Tecnologia da Informação e Bacharelado Interdisciplinar em Ciência e Tecnologia, oferece-se duas estruturas curriculares considerando os dois perfis de entrada.

Segundo uma perspectiva interdisciplinar, o PPC do curso de Engenharia de Computação da UFERSA proporciona aos discentes uma formação sólida dentro dos seguintes núcleos de conteúdos descritos na resolução CNE/CES 2/2019:

- Núcleo de conteúdos básicos: fundamentação teórica e prática acerca de temas necessários a formação de todos os cursos de graduação em engenharia (administração, ciências do ambiente, ciência e tecnologia dos materiais, comunicação e expressão, economia, eletricidade aplicada, expressão gráfica, física, humanidades, ciências sociais e cidadania, informática, matemática, mecânica dos sólidos, metodologia científica e tecnológica e química);
- Núcleo de conteúdos profissionalizantes: fundamentação teórica e prática acerca de temas básicos necessários a formação de Bacharéis em

Engenharia de Computação (algoritmos e estruturas de dados, circuitos elétricos, circuitos lógicos, controle de sistemas dinâmicos, eletrônica analógica e digital, instrumentação, matemática discreta, modelagem, análise e simulação de sistemas, organização de computadores, paradigmas de programação, sistemas de informação, sistemas operacionais e telecomunicações);

 Núcleo de conteúdos específicos: fundamentação teórica e prática sobre conteúdos específicos que abordem todos os temas exigidos pelos referenciais curriculares nacionais quanto à formação de Engenheiros de Computação.

4.1. Matriz Curricular via Bacharelado em Tecnologia da Informação e Bacharelado em Ciência e Tecnologia

Nesta seção, são apresentados os componentes curriculares do curso de Engenharia de Computação tomando como base os egressos dos cursos de Tecnologia da Informação e Ciência e Tecnologia. Na Tabela 1, estão definidos os componentes curriculares de Engenharia de Computação para os egressos em Tecnologia da Informação.

ESTRUTURAS CURRICULARES

Tabela 1 - Estrutura Curricular - Egressos de Tecnologia da Informação

1º Semestre			
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Algoritmos	-	4	60h
Laboratório de Algoritmos	Co-Requisito: Algoritmos	2	30h
Introdução a Computação e aos Sistemas de Informação	-	4	60h
Cálculo I	-	4	60h
Análise e Expressão Textual	-	4	60h
Ética e Legislação	-	2	30h

Seminário de Introdução ao Curso	-	2	30h	
Subt	Subtotal		330h	
2º Semestre				
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária	
Algoritmos e Estruturas de Dados I	Algoritmos; Laboratório de Algoritmos	4	60h	
Laboratório de Algoritmos e Estruturas de Dados I	Co-Requisito: Algoritmos e Estruturas de Dados I	2	30h	
Arquitetura e Organização de Computadores	Introdução à Computação e aos Sistemas de Informação	4	60h	
Cálculo II	Cálculo I	4	60h	
Geometria Analítica	-	4	60h	
Administração e Empreendedorismo	-	4	60h	
Sociologia	-	4	60h	
Subt	otal	26	390h	
	3º Semestre			
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária	
Algoritmos e Estruturas de Dados II	Algoritmos e Estruturas de Dados I; Laboratório de Algoritmos e Estruturas de Dados I	4	60h	
Laboratório de Algoritmos e Estruturas de Dados II	Co-Requisito: Algoritmos e Estruturas de Dados II	2	30h	
Sistemas Operacionais	Arquitetura e Organização de Computadores	4	60h	
Matemática Discreta	-	4	60h	
Introdução às Funções de Várias Variáveis	Cálculo II	4	60h	
Álgebra Linear	Geometria Analítica	4	60h	
Economia para Engenharias	-	4	60h	
Subt	cotal	26	390h	
	4º Semestre			
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária	

Programação Orientada a Objetos	Algoritmos e Estruturas de Dados II; Laboratório de Algoritmos e Estruturas de Dados II	4	60h
Banco de Dados	Algoritmos e Estruturas de Dados II; Laboratório de Algoritmos e Estruturas de Dados II	4	60h
Redes de Computadores	-	4	60h
Estatística	Cálculo I	4	60h
Mecânica Clássica	-	4	60h
Laboratório de Mecânica Clássica	Co-Requisito: Mecânica Clássica	2	30h
Química Geral	-	4	60h
Laboratório de Química Geral	Co-Requisito: Química Geral	2	30h
Sub	total	28	420h
	5° Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Engenharia de Software	Programação Orientada a Objetos	4	60h
Sistemas Distribuídos	Redes de Computadores; Sistemas Operacionais	4	60h
Filosofia da Ciência e Metodologia Científica	-	4	60h
Ondas e Termodinâmica	Mecânica Clássica	4	60h
Laboratório de Ondas e Termodinâmica	Co-Requisito: Ondas e Termodinâmica	2	30h
C: '. D: '.	T . 1 ~ \ C ~		
Circuitos Digitais	Introdução à Computação e aos Sistemas de Informação	4	60h
Laboratório de Circuitos Digitais		2	60h 30h
Laboratório de Circuitos Digitais	Sistemas de Informação Co-Requisito: Circuitos		
Laboratório de Circuitos Digitais	Sistemas de Informação Co-Requisito: Circuitos Digitais	2	30h
Laboratório de Circuitos Digitais	Sistemas de Informação Co-Requisito: Circuitos Digitais total	2	30h
Laboratório de Circuitos Digitais Sub	Sistemas de Informação Co-Requisito: Circuitos Digitais total 6° Semestre	2 24	30h 360h Carga

Laboratório de Eletricidade e Magnetismo	Co-Requisito: Eletricidade e Magnetismo	2	30h
Sinais e Sistemas	Álgebra Linear; Introdução às Funções de Várias Variáveis	6	90h
Subt	otal	16	240h
	7º Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Circuitos Elétricos	Sinais e Sistemas	4	60h
Sistemas Digitais Embarcados	Arquitetura e Organização de Computadores; Circuitos Digitais; Laboratório de Circuitos Digitais	4	60h
Sistemas de Transmissão de Dados	Sinais e Sistemas	4	60h
Teoria da Computação	Matemática Discreta	4	60h
Cálculo Numérico	Álgebra Linear; Cálculo II; Algoritmos; Laboratório de Algoritmos	4	60h
Ambiente, Energia e Sociedade	-	4	60h
Fundamentos da Ciência dos Materiais	Química Geral	4	60h
Subt	otal	28	420h
	8° Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Eletrônica Analógica	Circuitos Elétricos	4	60h
Laboratório de Eletrônica Analógica	Co-Requisito: Eletrônica Analógica	2	30h
Sistemas Inteligentes	Álgebra Linear; Introdução às Funções de Várias Variáveis; Estatística; Algoritmos e Estruturas de Dados II	4	60h
Sistemas de Controle I	Circuitos Elétricos; Sinais e Sistemas	6	90h
Sistema de Gestão de Saúde e Segurança no Trabalho	-	4	60h

Expressão Gráfica	-	4	60h	
Optativa I	Ver descrição dos componentes curriculares optativos definidos	4	60h	
Sistema em Tempo-Real	Sistemas Operacionais	2	30h	
Sub	Subtotal			
	9º Semestre			
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária	
Instrumentação	Eletrônica Analógica	4	60h	
Optativa II	Ver descrição dos componentes curriculares optativos definidos	4	60h	
Processamento Digital de Sinais	Sinais e Sistemas	4	60h	
Sistemas de Controle II	Sistemas de Controle I	4	60h	
Automação Industrial	Co-Requisito: Instrumentação; Co-Requisito: Sistemas de Controle II	4	60h	
Optativa III	Ver descrição dos componentes curriculares optativos definidos.	4	60h	
Sub	total	24	360h	
	10° Semestre			
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária	
Trabalho de Conclusão de Curso	-	4	60h	
Optativa IV	Ver descrição dos componentes curriculares optativos definidos.	4	60h	
Sub	total	8	120h	
Total 228			3.420h	
	Carga Horária Total			
Atividades Complementares			90h	
Componentes Curriculares			3.420h	
Es	Estágio Supervisionado			
	Total		3.670h	

Na Tabela 2, estão definidos os componentes curriculares de Engenharia de Computação para os egressos em Ciência e Tecnologia.

Tabela 2 - Estrutura Curricular – Egressos de Ciência e Tecnologia

1º Semestre			
1 Semestre			
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Ambiente, Energia e Sociedade	-	4	60h
Análise e Expressão Textual	-	4	60h
Cálculo I	-	4	60h
Geometria Analítica	-	4	60h
Algoritmo e Programação I	-	4	60h
Subt	otal	20	300h
	2º Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Álgebra Linear	Geometria Analítica	4	60h
Cálculo II	Cálculo I	4	60h
Química Geral	-	4	60h
Laboratório de Química Geral	Co-Requisito: Química Geral	2	30h
Laboratório de Mecânica Clássica	Co-Requisito: Mecânica Clássica.	2	30h
Mecânica Clássica	-	4	60h
Expressão Gráfica	-	4	60h
Subtotal		24	360h
	3º Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Introdução às Funções de Várias Variáveis	Cálculo II	4	60h
Laboratório de Ondas e Termodinâmica	Co-Requisito: Ondas e Termodinâmica	2	30h
Ondas e Termodinâmica	Mecânica Clássica	4	60h

Economia	-	2	30h
Fundamentos de Ciência dos Materiais	Química Geral	4	60h
Introdução à Computação e aos Sistemas de Informação	-	4	60h
Subt	cotal	20	300h
	4º Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Estatística	-	4	60h
Eletricidade e Magnetismo	Ondas e Termodinâmica.	4	60h
Filosofia da Ciência	-	4	60h
Administração e Empreendedorismo	-	4	60h
Laboratório de Eletricidade e Magnetismo	Co-Requisito: Eletricidade e Magnetismo	2	30h
Arquitetura e Organização de Computadores	-	4	60h
Laboratório de Algoritmos	-	2	30h
Sinais e Sistemas	Álgebra Linear; Introdução às Funções de Várias Variáveis	6	90h
Subt	Subtotal		450h
	5° Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Sociologia	-	4	60h
Ética e Legislação	-	2	30h
Algoritmos e Estrutura de Dados I	Algoritmo e Programação I; Laboratório de Algoritmos	4	60h
Laboratório de Algoritmos e Estrutura de Dados I	-	2	30h
Sistemas Operacionais	Arquitetura e Organização de Computadores	4	60h
Circuitos Digitais	-	4	60h
Laboratório de Circuitos	Co-Requisito: Circuitos	2	30h

Digitais	Digitais		
Subt	otal	22	330h
	6° Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Algoritmos e Estrutura de Dados II	Algoritmos e Estrutura de Dados I	4	60h
Laboratório de Algoritmos e Estrutura de Dados II	Co-Requisito: Algoritmos e Estrutura de Dados II	2	30h
Matemática Discreta	-	4	60h
Redes de Computadores	-	4	60h
Circuitos Elétricos	Sinais e Sistemas	4	60h
Cálculo Numérico	Álgebra Linear; Cálculo II; Algoritmo e Programação I	4	60h
Sistemas em Tempo-Real	Sistemas Operacionais	2	30h
Subt	total	24	360h
	7º Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Sistemas Digitais Embarcados	Arquitetura e Organização de Computadores; Circuitos Digitais; Laboratório de Circuitos Digitais	4	60h
Sistemas de Transmissão de Dados	Sinais e Sistemas	4	60h
Teoria da Computação	Matemática Discreta	4	60h
Programação Orientada a Objeto	Algoritmos e Estruturas de Dados II	4	60h
Sistemas Distribuídos	Redes de Computadores; Sistemas Operacionais	4	60h
Sistemas de Controle I	Circuitos Elétricos; Sinais e Sistemas	6	90h
Subtotal		26	390h
	8º Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária

Banco de Dados	Algoritmos e Estruturas de Dados II	4	60h
Eletrônica Analógica	Circuitos Elétricos	4	60h
Laboratório de Eletrônica Analógica	Co-Requisito: Eletrônica Analógica	2	30h
Sistemas Inteligentes	Álgebra Linear; Introdução às Funções de Várias Variáveis; Estatística; Algoritmos e Estruturas de Dados II	4	60h
Sistemas de Controle II	Controle I	4	60h
Engenharia de Software	Programação Orientada a Objetos	4	60h
Dependabilidade e Segurança	Sistemas Distribuídos	4	60h
Sub	total	26	390h
	9º Semestre		
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Instrumentação	Eletrônica Analógica	4	60h
Optativa I	Ver descrição dos componentes curriculares optativos definidos	4	60h
Optativa II	Ver descrição dos componentes curriculares optativos definidos	4	60h
Processamento Digital de Sinais	Sistemas de Transmissão de Dados	4	60h
Automação Industrial	Co-Requisito: Instrumentação; Co-Requisito: Sistemas de Controle II	4	60h
Sistema de Gestão de Saúde e Segurança no Trabalho	-	4	60h
Subtotal		24	360h
10° Semestre			
Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Optativa III	Ver descrição dos componentes curriculares optativos definidos	4	60h
Optativa IV	Ver descrição dos componentes	4	60h

	curriculares optativos definidos		
Trabalho de Conclusão de Curso	-	4	60h
Sub	total	12	180h
То	tal	242	3.420h
Carga Horária Total			
Atividades Complementares			90h
Componentes Curriculares		3.420h	
Estágio Supervisionado		160h	
Total			3.670h

As estruturas descritas nas **Erro! Fonte de referência não encontrada.** e 2 possuem carga horária total de 3.670 horas a serem cumpridas em um prazo mínimo, médio e máximo de 4 (quatro), 5 (cinco) e 8 (oito) anos, respectivamente. Diante disso, tal estrutura atende as restrições impostas pela resolução CNE/CES 2/2019 e pelos referenciais curriculares nacionais, em relação à carga horária mínima (3.600 horas) e tempo de integralização (5 anos) exigidos para o curso de Engenharia de Computação.

Além dos aspectos citados, os componentes definidos na estrutura curricular da Erro! Fonte de referência não encontrada. e 2 estão alinhados aos temas exigidos pelos referenciais curriculares nacionais, quanto à formação no curso de Engenharia de Computação. Dessa forma, a Erro! Fonte de referência não encontrada.3 descreve a relação entre esses temas e os componentes curriculares definidos.

Tabela 3 – Relação entre componentes curriculares e temas exigidos

Tema	Componente Curricular
	Algoritmos
Algoritmos e Estrutura de Dados	Algoritmos e Programação I
	Algoritmos e Estruturas de Dados I
	Algoritmos e Estruturas de Dados II

	Laboratório de Algoritmos	
	Laboratório de Algoritmos e Estruturas de Dados I	
	Laboratório de Algoritmos e Estruturas de Dados II	
A ' O ' ~ 1	Arquitetura e Organização de Computadores	
Arquitetura e Organização de Computadores	Introdução a Computação e aos Sistemas de Informação	
Banco de Dados	Banco de Dados	
Circuitos Elétricos	Circuitos Elétricos	
Comunicação de Dados	Sistemas de Transmissão de Dados	
Confiabilidade e Segurança de Sistemas	Dependabilidade e Segurança	
Dispositivos Lógicos Programáveis	Sistemas Digitais Embarcados	
Eletricidade	Eletricidade e Magnetismo	
Eletricidade	Laboratório de Eletricidade e Magnetismo	
Engenharia de Programas de	Engenharia de Software	
Computadores	Programação Orientada a Objetos	
Ergonomia e Segurança do Trabalho	Sistema de Gestão de Saúde e Segurança no Trabalho	
	Algoritmos e Estruturas de Dados I	
	Algoritmos e Estruturas de Dados II	
Estruturas de Dados	Laboratório de Algoritmos e Estruturas de Dados I	
	Laboratório de Algoritmos e Estruturas de Dados II	
Ética e Meio Ambiente	Ética e Legislação	
	Eletricidade e Magnetismo	
	Mecânica Clássica	
Física	Laboratório de Eletricidade e Magnetismo	
1'15104	Laboratório de Mecânica Clássica	
	Laboratório de Ondas e Termodinâmica	
	Ondas e Termodinâmica	
Linguagens de Programação	Algoritmos	

	Laboratório de Algoritmos
	Álgebra Linear
	Cálculo I
	Cálculo II
Matemática	Estatística
	Geometria Analítica
	Introdução às Funções de Várias Variáveis
	Economia para Engenharias
	Circuitos Digitais
Microeletrônica	Eletrônica Analógica
	Sistemas Digitais Embarcados
Microprocessadores e Microcontroladores	Sistemas Digitais Embarcados
Processamento Digital de Sinais	Processamento Digital de Sinais
Onímico	Laboratório de Química Geral
Química -	Química Geral
Redes de Computadores e Redes	Automação Industrial
Industriais	Redes de Computadores
	Análise e Expressão Textual
	Administração e Empreendedorismo
Relações Ciência, Tecnologia e Sociedade	Filosofia da Ciência e Metodologia Científica
	Sociologia
	Análise e Expressão Textual
	Ambiente, Energia e Sociedade
	Seminário de Introdução ao Curso
Sensores e Sistemas de Aquisição de Dados	Instrumentação
	Automação Industrial
Sistemas de Controle e Automoção	Sinais e Sistemas
Sistemas de Controle e Automação	Sistemas de Controle I
	Sistemas de Controle II

Sistemas Distribuídos	Sistemas Distribuídos	
Sistemas Distribuidos	Dependabilidade e Segurança	
	Circuitos Digitais	
	Eletrônica Analógica	
Sistemas e Dispositivos Eletrônicos, Analógicos e Digitais	Laboratório de Eletrônica Analógica	
210110111005, 1 1111110 givos v 2 1givins	Laboratório de Circuitos Digitais	
	Sistemas Digitais Embarcados	
Sistemas e Redes de Telecomunicação	Sistemas de Transmissão de Dados	
Sistemas Embarcados	Sistemas Digitais Embarcados	
Sistemas Inteligentes	Sistemas Inteligentes	
Sistemas Operacionais	Sistemas Operacionais	
Taoria da Computação	Teoria da Computação	
Teoria da Computação	Matemática Discreta	

4.2. Eixo de Formação Básica

O eixo de formação básica é composto pelos componentes obrigatórios definidos na estrutura curricular do curso. Diante disso, a listagem desses componentes é feita na **Erro! Fonte de referência não encontrada.**.

Tabela 4 – Eixo de formação básica

Componente Curricular	Créditos	Carga Horária
Administração e Empreendedorismo	4	60h
Álgebra Linear	4	60h
Ambiente, Energia e Sociedade	4	60h
Análise e Expressão Textual	4	60h
Cálculo I	4	60h
Cálculo II	4	60h
Economia para Engenharias	4	60h
Economia	2	30h

Eletricidade e Magnetismo	4	60h
Estatística	4	60h
Ética e Legislação	2	30h
Expressão Gráfica	4	60h
Filosofia da Ciência e Metodologia Científica	4	60h
Geometria Analítica	4	60h
Introdução a Computação e aos Sistemas de Informação	4	60h
Introdução às Funções de Várias Variáveis	4	60h
Laboratório de Eletricidade e Magnetismo	2	30h
Laboratório de Mecânica Clássica	2	30h
Laboratório de Ondas e Termodinâmica	2	30h
Laboratório de Química Geral	2	30h
Mecânica Clássica	4	60h
Ondas e Termodinâmica	4	60h
Química Geral	4	60h
Seminário de Introdução ao Curso	2	30h
Sociologia	4	60h
Total	84	1.260h

De acordo com a Resolução CNE/CES 2/2019, no mínimo 30% da carga horária mínima estipulada para todos os cursos de engenharia deve versar sobre o núcleo de conteúdos básicos. Dessa forma, os componentes definidos na **Erro!** Fonte de referência não encontrada. atendem tais restrições, uma vez que equivalem à aproximadamente 37% da carga horária mínima definida pelos Referenciais Curriculares Nacionais para o curso de Engenharia de Computação (3.600 horas).

Além da carga horária, a Resolução CNE/CES 2/2019 descreve também quais tópicos devem ser abordados no núcleo de Conteúdos Básicos dos Cursos de Graduação em Engenharia. Diante disso, a **Erro! Fonte de referência não encontrada.** descreve tais tópicos e lista quais componentes curriculares contemplam os mesmos.

Tabela 5 – Tópicos a serem abordados no núcleo de conteúdos básicos

Componentes Curriculares	
Administração e Empreendedorismo	
Análise e Expressão Textual	
Economia para Engenharias	
Economia	
Eletricidade e Magnetismo	
Laboratório de Eletricidade e Magnetismo	
Expressão Gráfica	
Sistemas de Controle I	
Eletricidade e Magnetismo	
Mecânica Clássica	
Laboratório de Eletricidade e Magnetismo	
Laboratório de Mecânica Clássica	
Laboratório de Ondas e Termodinâmica	
Ondas e Termodinâmica	
Ética e Legislação	
Sociologia	
Introdução a Computação e aos Sistemas de Informação	
Álgebra Linear	
Cálculo I	
Cálculo II	
Estatística	
Geometria Analítica	
Introdução às Funções de Várias Variáveis	
Sistemas de Controle I	
Filosofia da Ciência e Metodologia Científica	
Filosofia da Ciência	
Laboratório de Química Geral	

4.3. Eixo de Formação Profissionalizante

A Resolução CNE/CES 2/2019 apresenta uma lista de 53 tópicos que podem ser considerados pela IES (Instituição de Ensino Superior) na especificação do núcleo de conteúdos profissionalizantes dos cursos de graduação em engenharia oferecidos. Além disso, os Referenciais Curriculares Nacionais elencam um conjunto de 31 temas que devem ser abordados na formação do curso de Engenharia de Computação.

Diante desses aspectos, o eixo de formação profissionalizante é formado pelos componentes curriculares obrigatórios que estão relacionados aos tópicos listados na Resolução CNE/CES 2/2019 e que contemplam os temas exigidos pelos Referenciais Curriculares Nacionais. Dessa forma, a Erro! Fonte de referência não encontrada. descreve tais componentes e a Erro! Fonte de referência não encontrada. descreve as relações entre eles e os tópicos definidos na Resolução citada.

Tabela 6 - Eixo de formação profissionalizante

Componente Curricular	Créditos	Carga Horária
Algoritmos	4	60h
Algoritmos e Programação I	4	60h
Algoritmos e Estrutura de Dados I	4	60h
Algoritmos e Estrutura de Dados II	4	60h
Arquitetura e Organização de Computadores	4	60h
Circuitos Digitais	4	60h
Circuitos Elétricos	4	60h
Dependabilidade e Segurança	4	60h
Eletrônica Analógica	6	90h
Engenharia de Software	4	60h
Instrumentação	4	60h
Laboratório de Algoritmos	2	30h
Laboratório de Algoritmos e Estrutura de Dados I	2	30h
Laboratório de Algoritmos e Estrutura de Dados II	2	30h

Laboratório de Circuitos Digitais	2	30h
Matemática Discreta	4	60h
Programação Orientada a Objetos	4	60h
Sinais e Sistemas	6	90h
Sistemas de Controle I	6	90h
Sistemas de Controle II	4	60h
Sistemas de Transmissão de Dados	4	60h
Sistemas Operacionais	4	60h
Sistema em Tempo-Real	2	30h
Total	88	1.320h

Tabela 7 – Tópicos a serem abordados no núcleo de conteúdos básicos

Tópicos	Componente Curricular	
	Algoritmos	
	Algoritmos e Programação I	
	Algoritmos e Estrutura de Dados I	
Algoritmos e Estruturas de Dados	Algoritmos e Estrutura de Dados II	
2 uuos	Laboratório de Algoritmos	
	Laboratório de Algoritmos e Estrutura de Dados I	
	Laboratório de Algoritmos e Estrutura de Dados II	
Circuitos Elétricos	Circuitos Elétricos	
Circuitos Lógicos	Circuitos Digitais	
Circuitos Lógicos	Laboratório de Circuitos Digitais	
Controle de Sistemas Dinâmicos	Sistemas de Controle II	
	Circuitos Digitais	
Eletrônica Analógica e Digital	Eletrônica Analógica	
	Laboratório de Eletrônica Analógica	
Instrumentação	Instrumentação	
Matemática Discreta	Matemática Discreta	
Modelagem, Análise e	Sinais e Sistemas	

Simulação de Sistemas	Controle I	
Organização de Computadores	Arquitetura e Organização de Computadores	
Paradigmas de Programação	Programação Orientada a Objetos	
Sistamas da Informação	Dependabilidade e Segurança	
Sistemas de Informação Engenharia de Software		
Sistamos Oparacionais	Sistemas Operacionais	
Sistemas Operacionais	Sistemas em Tempo-Real	
Telecomunicações	Sistemas de Transmissão de Dados	

De acordo com a Resolução CNE/CES 2/2019, no mínimo 15% da carga horária mínima estipulada para os cursos de engenharia deve versar sobre o seu Núcleo de Conteúdos Profissionalizantes. Nesse ponto, os componentes curriculares definidos na **Erro! Fonte de referência não encontrada.** atendem tais restrições, uma vez que equivalem a aproximadamente 35% da carga horária mínima definida pelos Referencias Curriculares Nacionais para o curso de Engenharia de Computação (3.600 horas).

4.4. Eixo de Formação Específica

O eixo de formação específica é composto pelos componentes curriculares obrigatórios que não foram enquadrados nos eixos de formação básica e profissionalizante e que abordam os temas exigidos pelos Referenciais Curriculares Nacionais na formação de Bacharéis em Engenharia de Computação. Diante disso, a **Erro! Fonte de referência não encontrada.** descreve tais componentes.

Tabela 8 - Eixo de formação específica

Componente Curricular	Créditos	Carga Horária
Automação Industrial	4	60h
Banco de Dados	4	60h
Optativa I	4	60h
Optativa II	4	60h

Optativa III	4	60h
Optativa IV	4	60h
Processamento Digital de Sinais	4	60h
Sistemas Distribuídos	4	60h
Redes de Computadores	4	60h
Sistemas Digitais Embarcados	4	60h
Sistemas Inteligentes	4	60h
Teoria da Computação	4	60h
Trabalho de Conclusão de Curso	4	60h
Total	52	780h

4.5. Componentes Curriculares Optativos

A estrutura curricular definida na **Erro! Fonte de referência não encontrada.** exige a integralização de 4 componentes optativos de 60 horas ou 240 horas, no intuito de permitir ao discente aprofundar seus conhecimentos nas áreas específicas de seu interesse que estejam relacionadas à Engenharia de Computação. Dessa forma, os componentes optativos definidos na estrutura curricular apresentada nesse PPC são relacionados na **Erro! Fonte de referência não encontrada.**.

Tabela 9 – Componentes curriculares optativos

Componente Curricular	Pré-Requisitos	Créditos	Carga Horária
Acionamentos para Controle e Automação	Eletrônica Analógica; Co- Requisito: Sistemas de Controle II	4	60h
Análise de Projeto de Sistemas Orientados a Objetos	Engenharia de <i>Software</i>	4	60h
Compiladores	Algoritmos e Estrutura de Dados I; Sistemas Operacionais; Teoria da Computação	4	60h
Computação e Programação	Sistemas Distribuídos	4	60h

Paralela			
Computação Gráfica	Álgebra Linear; Algoritmos e Estrutura de Dados I; Geometria Analítica	4	60h
Comunicações Sem-Fio	Redes de Computadores; Sistemas de Transmissão de Dados	4	60h
Desenvolvimento de Aplicações para Dispositivos Móveis	-	4	60h
Desenvolvimento de <i>Software</i> Embarcado	Circuitos Digitais	4	60h
Fenômenos de Transporte	Cálculo II; Ondas e Termodinâmica	4	60h
Gerência de Redes	Redes de Computadores	4	60h
Introdução à Robótica	Álgebra Linear; Algoritmos e Estrutura de Dados I; Geometria Analítica; Sinais e Sistemas	4	60h
Libras	-	2	30h
Lógica Matemática	Matemática Discreta	4	60h
Mecânica Geral I	Mecânica Clássica	4	60h
Multimídia	Sistemas Distribuídos	4	60h
Otimização de Sistemas	Álgebra Linear; Cálculo Numérico; Algoritmos e Estrutura de Dados I	4	60h
Processamento Digital de Imagens	Algoritmos e Estrutura de Dados I; Co-requisito: Processamento Digital de Sinais	4	60h
Programação Web	Banco de Dados; Programação Orientada a Objeto.	4	60h
Redes de Sensores Sem-Fio	Algoritmos e Estrutura de Dados I; Redes de Computadores; Sistemas de Transmissão de Dados	4	60h

Redes em Banda Larga	Redes de Computadores; Sistemas de Transmissão de Dados	4	60h
Redes Neurais Artificiais	Cálculo Numérico; Sistemas Inteligentes	4	60h
Resistência dos Materiais I	Mecânica Geral I	4	60h
Segurança de Redes	Estruturas de Dados e Programação; Redes de Computadores	4	60h
Sistemas Não-Lineares	Co-requisito: Sistemas de Controle II	4	60h
Teoria da Informação e Codificação	Redes de Computadores; Sistemas de Transmissão de Dados	4	60h
Tópicos Especiais – Engenharia de Software	Engenharia de Software	4	60h
Tópicos Especiais – Redes de Computadores	Redes de Computadores	4	60h
Tópicos Especiais – Sistemas de Controle	Co-requisito: Sistemas de Controle II	4	60h
Tópicos Especiais – Sistemas de Transmissão de Dados	Sistemas de Transmissão de Dados	4	60h
Tópicos Especiais – Sistemas Digitais	Sistemas Digitais	4	60h

4.6. Trabalho de Conclusão de Curso

O Trabalho de Conclusão de Curso (TCC) é um componente curricular obrigatório dos cursos de graduação da UFERSA e é de suma importância na formação do discente, pois objetiva proporcionar experiência em pesquisa e/ou extensão mediante a produção de um trabalho de caráter técnico-científico que sintetize e integre os conteúdos vistos ao longo do curso. Em relação ao seu formato, o TCC do curso de Engenharia de Computação da UFERSA segue os procedimentos descritos na resolução vigente da UFERSA.

4.7. Atividades Complementares

A estrutura curricular definida nesse PPC exige a integralização obrigatória de 90h de atividades complementares, no intuito de proporcionar aos discentes uma visão acadêmica e profissional mais abrangente, mediante a participação em projetos pesquisa e de extensão, participação em eventos, monitorias, projetos de iniciação científica, estágio extracurricular, publicação de artigos, etc.

No âmbito da UFERSA, as atividades complementares são regidas pela resolução vigente da UFERSA.

4.8. Estágio Supervisionado

Em concordância com a resolução CNE/CES 2/2019 e resolução CNE/CES Nº 2/2007, visando promover a integração dos discentes ao ambiente de prática profissional, os alunos do curso de Engenharia de Computação da UFERSA devem cumprir uma carga horária obrigatória de 160 horas de estágio supervisionado, cuja realização é regulamentada pela legislação interna descrita na resolução vigente da UFERSA. O estágio obrigatório pode ser realizado quando o discente atingir 2100 horas de componentes curriculares obrigatórios (referente ao 7º semestre do curso). Na estrutura curricular, o mesmo foi pensado para o aluno realizar esta atividade no 10º semestre.

O discente poderá realizar estagio com jornada de trabalho de até 40 (quarenta) horas semanais quando não estiver realizando disciplinas/atividades presenciais, inclusive no período de recesso acadêmico conforme legislação vigente.

Além do estágio obrigatório, o discente pode realizar o estágio não obrigatório, a ser realizado em qualquer período do curso e este, será contabilizado como carga horária das atividades complementares.

4.9. Representação Gráfica do Perfil Formativo

O discente do curso de Engenharia de Computação cursará 10 (dez) períodos letivos totalizando 3670 horas-aulas, sendo 3120 horas de componente curricular obrigatório, 240 horas de componentes optativas, 90 horas de atividades

complementares, 160 horas de estágio supervisionado e 60 horas de Trabalho de Conclusão de Curso (TCC), conforme ilustrado abaixo.

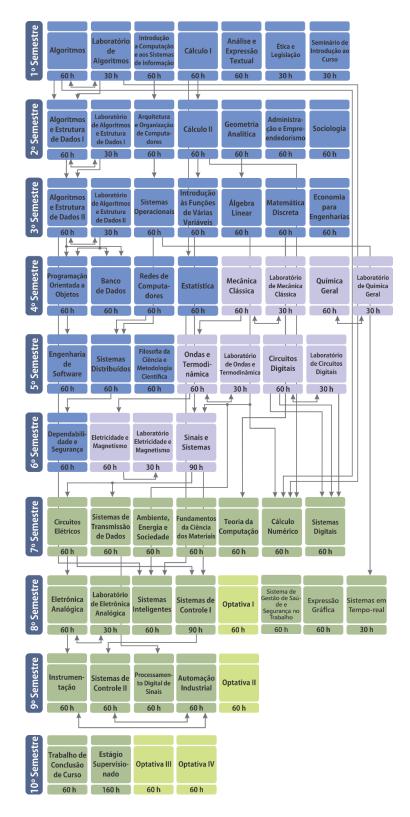


Figura 1 - Perfil formativo - Egressos do Bacharelado em Tecnologia da Informação

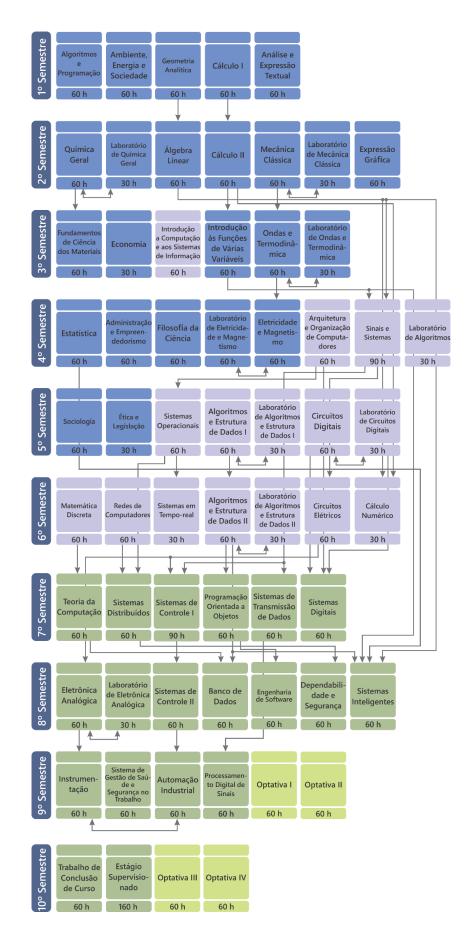


Figura 2 - Perfil formativo - Egressos do Bacharelado em Ciência e Tecnologia

4.10. Ementas e Bibliografias dos Componentes Definidos na Estrutura Curricular

Conforme dito, o ingresso no curso de Engenharia de Computação da UFERSA *câmpus* Pau dos Ferros será realizado por meio do curso Bacharelado em Tecnologia da Informação e Bacharelado em Ciência e Tecnologia e, dessa forma, parte dos componentes definidos na estrutura curricular do curso de Engenharia da Computação são pertencentes a estes cursos.

Ementas dos Componentes Curriculares Obrigatórios

Componente	Carga Horária
Administração e Empreendedorismo	60h

Ementa

As organizações. A Administração e suas funções. Liderança. O empreendedor e a atividade empreendedora. Tipos de empreendedorismo. Plano de negócios. Aspectos e formalidades legais na constituição da empresa. O planejamento estratégico do negócio.

Bibliografia Básica

- BERNARDI, L. A., *Manual de Empreendedorismo e Gestão: Fundamentos, Estratégias e Dinâmicas*. 1ª ed. São Paulo: Atlas 2012
- DOLABELA, F., Oficina do Empreendedor. 2ª ed. São Paulo: Sextante, 2008.
- DORNELAS, J. C. A. *Empreendedorismo: Transformando idéias em negócios*. 6ª ed. Rio de Janeiro: Campus, 2017.
- MARCOVITCH, J., Pioneiros & Empreendedores A Saga do Desenvolvimento no Brasil Volume I. 2ª ed. São Paulo: EDUSP, 2009
- CHIAVENATO, I. *Introdução à teoria geral da administração*: ed.compacta. 3ª ed. Rio de Janeiro: Campus, 1999.
- FAYOL, H. *Administração industrial e geral*. 10 ed. São Paulo: Atlas, 2012.

- MELO NETO, F.P. e FROES, C., *Empreendedorismo Social A Transição para a Sociedade Sustentável*. 1ª ed. Rio de Janeiro: Qualitymark, 2002.
- BRITO, F. e WEVER, L. Empreendedores Brasileiros Vivendo e Aprendendo com Grandes Nomes. 1ª ed. Rio de Janeiro: Negócio-Editora, 2003.
- PARK, K. H. (coord.); De BONIS, Daniel F.; ABUD, Marcelo R. *Introdução ao estudo da administração*. 1ª ed.São Paulo: Pioneira, 1997.
- BERNARDES, C. Teoria geral da administração: análise integrada das organizações. 1ª ed. São Paulo: Atlas, 1993.
- CARAVANTES, G.R. *Teoria geral da administração: pensando e fazendo*. 1ª ed. Porto Alegre: AGE, 1998.

• DRUCKER, P. F. *Administração: tarefas, responsabilidades, práticas.* v.1, v.2, v.3. 1ª ed.São Paulo: Pioneira, 1975.

Componente	Carga Horária
Algoritmos	60h

Introdução aos algoritmos. Formas de representações de algoritmos. Variáveis, constantes, operadores e expressões. Estruturas de seleção e de repetição. Vetores e matrizes. Funções e procedimentos. Abstração e resolução de problemas utilizando algoritmos.

Bibliografia Básica

- SALVETTI, D. D.; BARBOSA, L. M. *Algoritmos*. São Paulo: Makron Books, 2004. 300p.
- MIZRAHI, V. V. Treinamento em linguagem C. 2ª ed. São Paulo: Prentice-Hall, 2008.
 432p.
- DEITEL, P.; DEITEL, H. C: como programar. 6ª ed. São Paulo: Pearson, 2007. 848p.

- DEITEL P., DEITEL H. C++: how to program. 8^a ed. Pearson, 2011. 1104p.
- SOUZA, M. A. F.; GOMES, M. M.; SOARES, M. V.; CONCILIO, R. *Algoritmos e lógica de programação*. 2ª ed. São Paulo: Thomson Learning, 2012. 262p.
- FAHER, H.; BECKER, C. G.; FARIA, E. C.; MATOS, H. F.; SANTOS, M. A.; MAIA, M. L. *Algoritmos estruturados*. 3ª ed. Rio de Janeiro: LTC, 1999. 304p.
- MANZANO, J. A. N. G.; OLIVEIRA, J. F. *Estudo dirigido de algoritmos*. 15ª ed. São Paulo: Érica, 2012. 240p.
- MANZANO, J. A. N. G.; OLIVEIRA, J. F. *Algoritmos Lógica para desenvolvimento de programação de computadores*. 26ª ed. São Paulo: Érica, 2012. 328p.

Componente	Carga Horária
Algoritmos e Estrutura de Dados I	60h

Registros. Ponteiros e manipulação de arquivos. Introdução a complexidade de algoritmos (notações de melhor, pior e caso médio). Algoritmos de busca e de ordenação. Pilhas, filas e listas e suas operações e algoritmos. Abstração e resolução de problemas utilizando algoritmos e estruturas de dados.

Bibliografia Básica

- ASCENCIO, A. F. G. Estrutura de Dados. São Paulo: Pearson, 2011. 448p.
- SZWARCFITER, J. L.; MARKENZON L. Estruturas de Dados e Seus Algoritmos. 3ª ed. Rio de Janeiro: LTC, 2010. 318p.
- PREISS, B. Estruturas de Dados e Algoritmos. Rio de Janeiro: Campus, 2001. 584p.

- ZIVIANI, N. *Projeto de Algoritmos com Implementações em Java e C++*. Thomson Learning, 2006. 642p.
- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. *Algoritmos: Teoria e Prática*. 3ª ed. Rio de Janeiro: Campus, 2012. 944p.
- DEITEL, P.; DEITEL, H. *C: Como Programar*. 6^a ed. São Paulo: Pearson, 2007. 848p.
- TOSCANI, L. V.; VELOSO, P. A. S. *Complexidade de Algoritmos Vol. 13*. 3ª ed. Porto Alegre: Bookman, 2012. 280p. (Série de livros didáticos informática UFRGS).
- LOPES, A.; GARCIA, G. Introdução a Programação. Rio de Janeiro: Campus, 2002.
 488p.

Componente	Carga Horária
Algoritmos e Estrutura de Dados II	60h

Árvores (binária, binária de busca e AVL) e suas operações e algoritmos. Tabelas de dispersão e seus algoritmos e operações. Listas de prioridades e seus algoritmos e operações. Grafos e seus algoritmos e operações. Abstração e resolução de problemas utilizando algoritmos e estruturas de dados.

Bibliografia Básica

- ASCENCIO, A. F. G. Estrutura de Dados. São Paulo: Pearson, 2011. 448p.
- SZWARCFITER, J. L.; MARKENZON L. Estruturas de Dados e Seus Algoritmos. 3ª ed. Rio de Janeiro: LTC, 2010. 318p.
- PREISS, B. Estruturas de Dados e Algoritmos. Rio de Janeiro: Campus, 2001. 584p.

- ZIVIANI, N. *Projeto de Algoritmos com Implementações em Java e C++*. Thomson Learning, 2006. 642p.
- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. *Algoritmos: Teoria e Prática*. 3ª ed. Rio de Janeiro: Campus, 2012. 944p.
- DEITEL, P.; DEITEL, H. C: Como Programar. 6^a ed. São Paulo: Pearson, 2007. 848p.
- TOSCANI, L. V.; VELOSO, P. A. S. *Complexidade de Algoritmos Vol. 13*. 3ª ed. Porto Alegre: Bookman, 2012. 280p. (Série de livros didáticos informática UFRGS).
- LOPES, A.; GARCIA, G. Introdução a Programação. Rio de Janeiro: Campus, 2002.
 488p.

Componente	Carga Horária
Algoritmo e Programação I	60h

Introdução à programação. Fundamentos de algoritmos e sua representação. Programação em linguagem de alto nível. Desenvolvimento, codificação e depuração de programas. Desenvolvimento de programas em linguagem estruturada.

Bibliografia Básica

- OLIVEIRA, J. F.; MANZANO, J. A. N. G. *Algoritmos: Lógica para Desenvolvimento de Programação de Computadores*. 21a Ed. São Paulo: Érica, 2005.
- MIZRAHI, Victorine Viviane. *Treinamento em Linguagem C++*. 2. ed. Prentice-Hall, 2008.
- ASCENCIO, Ana; CAMPOS, Edilene. *Fundamentos da Programação de Computadores*. 3ª ed. Prentice-Hall, 2012.

- STROUSTRUP, Bjarne. A Linguagem de Programação C++. 4. ed. Bookman, 2013.
- DEITEL, Harvey; DEITEL, Paul. C++ Como Programar. 6. ed. Prentice Hall, 2007.
- KERNIGHAN, Brian W. C, A Linguagem de Programação. 1ª ed. Elsevier. 1989.
- MOKARZEL, Fábio; SOMA, Nei. *Introdução à Ciência da Computação*. 1a ed. Elsivier, 2008.
- FOROUZAN, Behrouz; MOSHARRAF, Firouz. Fundamentos da Ciência da Computação. 1a ed. Cengage Learning, 2011.

Componente	Carga Horária
Álgebra Linear	60h

Matrizes. Determinantes. Sistemas lineares. Espaços vetoriais. Combinações lineares. Transformações lineares. Autovalores e Autovetores.

Bibliografia Básica

- BOLDRINI, J.L; COSTA, S.I.R, FIGUEIREDO, V.L.; WETZLER, H.G.; Álgebra Linear. 3ª ed. São Paulo –SP:Editora HABRA LTDA, 1980.
- CALLIOLI, C.A.; DOMINGUES, H.H.; COSTA, R.C.F.; Álgebra Linear e Aplicações. 6ª ed. São Paulo: Editora ATUAL, 1991.
- STEINBRUCH, A.; WINTERLE, P.; *Produtos de vetores, em Geometria Analítica*. 1^a ed. São Paulo-SP: McGraw-Hill, 1987, pp. 39-98.

- Lipschutz, Seymour. Álgebra linear. 4. ed, 2011.
- LEON, Steven J. Algebra Linear com Aplicações, 8ª edição São Paulo: LTC.
- STEINBRUCH, A.; WINTERLE, P.; *Vetores no IR*^2 *e no IR*^3, *em Geometria Analítica*. 1ª edição. McGraw-Hill, 1987, pp. 15-38.

Componente	Carga Horária
Ambiente, Energia e Sociedade	60h

Meio ambiente. Evolução da questão ambiental. Crise ambiental. Desenvolvimento sustentável. Economia solidária. Responsabilidade socioambiental. Política ambiental. Recursos energéticos renováveis e não renováveis.

Bibliografia Básica

- BRAGA, Benedito; HESPANHOL, Ivanildo; CONEJO, João G. Lotufo; MIERZWA, José Carlos; BARROS, Mario Thadeu L. de.; SPENCER, Milton; PORTO, Mônica; NUCCI, Nelson; JULIANO, Neusa; EIGER, Sérgio. *Introdução à engenharia ambiental o desafio do desenvolvimento sustentável*. 2 ed., 4 reimpressão. São Paulo: Pearson Prentice Hall, 2009. 318p.
- GOLDEMBERG, José; LUCON, Oswaldo. *Energia, meio ambiente e desenvolvimento*. 3.ed. São Paulo: Editora da Universidade de São Paulo, 2011. 396p.
- MILLER, G. Tyler. *Ciência ambiental*. Tradução da 11ª edição norte-americana. São Paulo: Thomson Learning, 2012. 501p.

- DAJOZ, Roger. *Princípios de ecologia*. 7.ed. Porto Alegre: Artmed, 2005. 520p.
- GONÇALVES, C. W. Porto. *Os (des)caminhos do meio ambiente*. 11ed. São Paulo: Contexto, 2011. 148p.
- ODUM, Eugene P. BARRET, Gary W. *Fundamentos de Ecologia*. 5.ed. São Paulo: Thomson Learning, 2007. 612p.
- PHILIPPI Jr., A.; ROMÉRO, M. de A; BRUNA, G. C. *Curso de Gestão Ambiental*. Barueri: Manole, 2004. 1045p.
- RICARDO, Beto; CAMPANILI, M. (editores gerais). *Almanaque Brasil Socioambiental* 2008. São Paulo: ISA, 2007. 551p.
- SÁNCHEZ, Luis Enrique. Avaliação de impacto ambiental. Oficina de Textos, 2008, 495p.

Componente	Carga Horária
Análise e Expressão Textual	60h

Abordar os paradigmas textuais e científicos na produção da escrita científica, a intertextualidade como elemento de linguagem no contexto da textualidade e da oralidade e da visualidade, a coesão e coerência textual como elemento estruturador da linguagem acadêmica, o estilo como mediador entre forma e conteúdo na produção do conhecimento, a interdisciplinaridade como estética da linguagem.

Bibliografia Básica

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Informação e documentação referências elaboração: NBR 6023. Referências bibliográficas Normas técnicas. Rio de Janeiro, 2000
- MEDEIROS, João Bosco. *Prática de leitura*. In: Redação científica. 3 ed. São Paulo: Atlas, 1997 pp. 53-61.
- SEVERINO, Antônio Joaquim. *A Organização da vida de estudos na universidade*. In: Metodologia do trabalho científico. 21 ed. São Paulo: Cortez Editora, 2000. pp. 23-33.
- SANTOS, L.B, Metodologia Científica: uma abordagem direcionada para os cursos de engenharia. Apostila do centro de Tecnologia da Universidade de Alagoras. Maceió (2006)
- MARTINS, D. S. e ZILBERKNOP, L. S. Português Instrumental. Porto Alegre: Sagra

- BORGES, M. M. e NEVES, M. C. B. Redação Empresarial. Rio de janeiro: SENAC, 1997.
- FIORIN, J. L. e SAVIOLI, F. P. Para entender o texto. São Paulo: Ática, 1990.
- GERALDI, J. W. Org. *O texto na sala de aula leitura e produção*. 4 ed., Cascavel, ASSOESTE, 1984.

Componente	Carga Horária
Arquitetura e Organização de Computadores	60h

Aritmética computacional: representação numérica (números inteiros e em ponto flutuante) e operações aritméticas. Histórico de arquiteturas e processadores. Organização de computadores: memória (tipos, características e hierarquia), barramento, processadores e dispositivos de E/S. Paralelismo no nível de instrução e de processador. Modelo de sistemas de computação baseados em máquinas virtuais. Arquitetura do conjunto de instruções: modelos de memória, conjunto de registradores, tipos de dados, formato de instruções, modos de endereçamento e tipos de instruções. Linguagem de montagem (*Assembly*): estrutura das instruções, processo de montagem, macros, ligação e carga.

Bibliografia Básica

- TANENBAUM, A. S. *Organização estruturada de computadores*. 6ª ed. Rio de Janeiro: Prentice Hall, 2013. 624p;
- STALLINGS, W. *Arquitetura e organização de computadores*. 8ª ed. Rio de Janeiro: Prentice Hall, 2010. 640p;
- HENNESSY, J. L; PATTERSON, D. A. *Arquitetura de computadores*: uma abordagem quantitativa. 5ª ed. Rio de Janeiro: Campus, 2014. 744p.

- NULL, L.; LOBUR, J. *Princípios básicos de arquitetura e organização de computadores*. 2ª ed. Porto Alegre: Bookman, 2010. 822p;
- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. Sistemas digitais: princípios e aplicações. 11ª ed. São Paulo: Prentice Hall, 2011;
- TOKHEIM, R. *Fundamentos de eletrônica digital* Vol. 1: Sistemas combinacionais. Rio de Janeiro: McGraw-Hill, 2013. 326p;
- TOKHEIM, R. *Fundamentos de eletrônica digital* Vol. 2: Sistemas seqüenciais. Rio de Janeiro: McGraw-Hill, 2013. 274p;
- JUNIOR, H. A. *Fundamentos de informática* Eletrônica digital. Rio de Janeiro: LTC, 2010. 220p.

Componente	Carga Horária
Automação Industrial	60h

Estrutura hierárquica dos diversos níveis da automação industrial. Nível de controle: CLPs, programação em Ladder, programação em SFC, controle regulatório, controle PID e principais métodos de sintonia de PIDs. Nível de supervisão: sistemas SCADA, softwares supervisórios e programação de telas. Nível de redes industriais: Foundation Fieldbus, Hart, Devicenet, Controlnet, Ethernet/IP e protocolo OPC.

Bibliografia Básica

- GEORGINI, Marcelo. Automação aplicada: descrição e implementação de sistemas sequenciais com PLCs. 9.ed. São Paulo: Érica, 2006.
- SILVEIRA, Paulo Rogério Da; SANTOS, Winderson E. Dos. *Automação e controle discreto*. São Paulo: Érica, 2013.
- CAMPOS, Mario Cesar M. Massa De; TEIXEIRA, Herbert C.g. Controles típicos de equipamentos e processos industriais. 2.ed. São Paulo: Blucher, 2010.

- THOMAZINI, Daniel; ALBUQUERQUE, Pedro Urbano Braga De. Sensores industriais: fundamentos e aplicações. 8.ed. atual. São Paulo: Érica, 2011.
- FIALHO, Arivelto Bustamante. *Instrumentação industrial:* conceitos, aplicações e análises. 7.ed. São Paulo: Érica, 2010.
- BALBINOT, A.; BRUSAMARELLO, V. J. *Instrumentação e fundamentos de medidas* Vol. 1. 2ª ed. Rio de Janeiro: LTC, 2011. 492p;
- BALBINOT, A.; BRUSAMARELLO, V. J. *Instrumentação e fundamentos de medidas* Vol. 2. 2ª ed. Rio de Janeiro: LTC, 2011. 492p.
- ROQUE, L. A. O. <u>Automação de Processos com Linguagem Ladder e Sistemas Supervisórios</u> 1ª ed. Rio de Janeiro: LTC, 2014. 456p.

Componente	Carga Horária
Banco de Dados	60h

Introdução aos bancos de dados: compartilhamento de dados, Sistema de Gerenciamento de Banco de Dados (SGBD) e modelos (conceitual, lógico e físico). Fundamentos e construção de modelos utilizando a abordagem Entidade-Relacionamento (ER). Fundamentos e construção de modelos utilizando a abordagem relacional. Transformação entre modelos: entidade-relacionamento e relacional. Normalização. Álgebra relacional. Linguagem de consulta a banco de dados.

Bibliografia Básica

- DATE, C. J. *Introdução a sistemas de bancos de dados*. 8.ed. Rio de Janeiro: Elsevier, 2003.
- HEUSER, Carlos Alberto. *Projeto de banco de dados*. 6.ed. Porto Alegre: Bookman, 2009.
- SILBERSCHATZ, Abraham; KORTH, Henry F; SUDARSHAN, S. *Sistema de banco de dados*. 3.ed. São Paulo: Pearson Makron Books, 2005.

- ROB, Peter; CORONEL, Carlos. *Sistemas de banco de dados*: projeto, implementação e gerenciamento. São Paulo: Cengace Learning, 2011.
- GILLENSON, Mark L. Fundamentos de sistemas de gerência de banco de dados. Rio de Janeiro: LTC, 2006.
- MANNINO, Michael V. *Projeto, desenvolvimento de aplicações e administração de banco de dados*. São Paulo: Mcgraw-hill, 2008.
- RAMAKRISHNAN, Raghu; GEHRKE, Johannes. Sistema de gerenciamento de banco de dados. São Paulo: Mcgraw-hill, 2008.
- DAMAS, Luís. *SQL*, structured query language. 6.ed. Rio de Janeiro: LTC, 2014.

Componente	Carga Horária
Cálculo I	60h

Números Reais. Funções Elementares e seus Gráficos. Limites. Continuidade. Derivadas. Aplicações das Derivadas.

Bibliografia Básica

- FLEMMING, D. M.; GONÇALVES, M. B. Cálculo A: funções, limite, derivação e integração. 6a ed. São Paulo: Pearson, 2006.
- GUIDORIZZI, L. Um curso de Cálculo, Vol 1. Rio de Janeiro: Editora LTC, 2008.
- SIMMONS, G. F. *Cálculo com geometria analítica*. 1a ed. São Paulo: Pearson Makron Books, 1987.

- STEWART, J. Cálculo Volume 1. 7a. Ed. São Paulo, SP: Cengage Learning, 2013.
- THOMAS, G. B.; WEIR, M. D.; GIORDANO, F. R.; HASS, J. *Cálculo Volume 1*. 12^a ed. São Paulo, SP: Pearson/Addison Wesley, 2013.
- ÁVILA, Geraldo Severo de Souza; ARAÚJO, Luís Cláudio Lopes de. Cálculo -Ilustrado, Prático e Descomplicado, Rio de Janeiro: LTC.

Componente	Carga Horária
Cálculo II	60h

Primitivas. Técnicas de integração. Integral definida. Teorema fundamental do Cálculo. Integrais Impróprias. Aplicações das integrais.

Bibliografia Básica

- FLEMMING, Diva Marília. CÁLCULO B: Funções, Limite, Derivação, Integração / Diva Marília Flemming, Mirian Buss Gonçalves.Vol. 1, 6ª ed. São Paulo: Macron, 2009
- GUIDORIZZI, L. Um curso de Cálculo, Vol 1. Rio de Janeiro: Editora LTC, 2008.
- LEITHOLD, Louis. *O Cálculo com Geometria Analítica*, Vol. 1, 3ª ed. São Paulo: Editora Habra Ltda,1994.

- LEITHOLD,Louis. *O Cálculo com Geometria Analítica*, Vol. 2, 3ª ed. São Paulo: Editora Habra Ltda, 1994.
- LIPSCHUTZ, Seymour. *Álgebra linear: teoria e problemas* 4ª ed. São Paulo: Makron Mooks, 2011.
- STEWART, J. Cálculo Volume 1. 7a. Ed. São Paulo, SP: Cengage Learning, 2013.
- SIMMONS, George F. *Cálculo com geometria analítica*, vol.1. 1ª ed. São Paulo: Editora McGraw-Hill, 1987.

Componente	Carga Horária
Cálculo Numérico	60h

Sistemas de numeração. Erros. Zeros de funções. Interpolação. Resolução numérica de sistemas de equações lineares. Interpolação. Mínimos quadrados. Integração numérica. Tratamento numérico de equações diferenciais ordinárias.

Bibliografia Básica

- FRANCO, N.M.B. Cálculo numérico. 1a ed. São Paulo: Prentice Hall, 2010.
- BURDEN, R. L. Análise numérica. São Paulo: Cengage Learning, 2013.
- RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo numérico: aspectos teóricos e computacionais . 2a ed. São Paulo: Pearson Education, 1996
- 4. SPERANDIO, D.; MENDES, J. T.; SILVA, L. H. M Cálculo numérico: características matemáticas e computacionais dos métodos numéricos. São Paulo: Pearson Education, 2003.

- BARROSO, L. C. Cálculo numérico com aplicações. 2a. ed. São Paulo: Harbra, 1987.
- BURIAN, R.; LIMA, A. C. *Cálculo numérico: fundamentos de informática*. 2a ed. Rio de Janeiro: LTC, 2011.
- CHAPRA, S.C. *Métodos numéricos aplicados com matlab para engenheiros e cientistas*. 3a ed. McgralHill –Artmed, 2013.
- ARENALES, S. Cálculo numérico: aprendizagem com apoio de software. São Paulo: Cengage Learning, 2010.
- LEON, S. J. Álgebra linear com aplicações. 4a. ed. Rio de Janeiro: LTC, 2008.

Componente	Carga Horária
Circuitos Digitais	60h

Sistemas numeração e códigos. Circuitos combinacionais: portas lógicas, tabelas-verdades, funções booleanas, análise e projeto. Circuitos seqüenciais: *Latches*, *Flip-Flops*, máquinas de estados finitos, análise e projeto. Análise e projeto em nível de transferência de registradores (RTL).

Bibliografia Básica

- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. *Sistemas digitais*: princípios e aplicações. 11ª ed. São Paulo: Prentice Hall, 2011. 840p;
- VAHID, F. *Sistemas digitais*: projeto, otimização e HDLS. Porto Alegre: Bookman, 2008. 560p;
- PEDRONI, V. A. *Eletrônica digital moderna e VHDL*. Rio de Janeiro: Campus, 2010. 648p.

- TOKHEIM, R. *Fundamentos de eletrônica digital* Vol. 1: Sistemas combinacionais. Rio de Janeiro: McGraw-Hill, 2013. 326p;
- TOKHEIM, R. Fundamentos de eletrônica digital Vol. 2: Sistemas seqüenciais. Rio de Janeiro: McGraw-Hill, 2013. 274p;
- JUNIOR, H. A. *Fundamentos de informática* Eletrônica digital. Rio de Janeiro: LTC, 2010. 220p;
- CAPUANO, F. G.; IDOETA, I. V. *Elementos da eletrônica digital*. 41ª ed. São Paulo: Érica, 2012. 544p;
- NULL, L.; LOBUR, J. *Princípios básicos de arquitetura e organização de computadores*. 2ª ed. Porto Alegre: Bookman, 2010. 822p.

Componente	Carga Horária
Circuitos Elétricos	60h

Classificação e componentes básicos de circuitos elétricos. Leis de Kirchhoff. Análise de circuitos por equações de malhas e de nós. Teoremas da superposição, Norton e Thévenin. Circuitos elétricos de primeira e segunda ordem. Comportamento transitório e permanente de circuitos no domínio do tempo. Aplicação da transformada de Laplace na análise e resolução de circuitos elétricos de primeira e segunda ordem. Modelagem de circuitos por equações de estado.

Bibliografia Básica

- HAYT, William H; KEMMERLY, Jack E; DURBIN, Steven M. *Análise de circuitos em engenharia*. São Paulo: McGraw-Hill, 2008. 858p. ISBN: 9788577260218.
- JOHNSON, David E; HILBURN, John L; JOHNSON, Johnny R. Fundamentos de análise de circuitos elétricos. Rio de Janeiro: LTC, 2012. 539p. ISBN: 9788521612384.
- ALEXANDER, C. K.; SADIKU, M. N. O. Fundamentos de circuitos elétricos. 5ª ed. Porto Alegre: AMGH, 2013. 896p. ISBN: 9788580551723.

- IRWIN, J. D. *Análise básica de circuitos para engenharia*. 10^a ed. Rio de Janeiro: LTC, 2016. 700p. ISBN: 9788521621805.
- ANTON, H.; BUSBY, R. C. *Álgebra linear contemporânea*. Porto Alegre: Bookman, 2011. 612p. ISBN: 9788536306155.
- SPIEGEL, M. R.; MOYER, R. E. Álgebra. 3ª ed. Porto Alegre: Bookman, 2015. 392p. (Coleção Schaum). ISBN: 9788540701540;
- LIPSCHUTZ, S.; LIPSON, M. *Álgebra Linear*. 4ª ed. Porto Alegre: Bookman, 2011. 434p. (Coleção Schaum);
- ZILL, D. G.; CULLEN, M. K. *Equações diferenciais* Vol. 1. 3ª ed. São Paulo: Pearson Makron Books, 2001. ISBN: 9788534612913.

Componente	Carga Horária
Dependabilidade e Segurança	60h

Tolerância a falhas: definição, redundância de *hardware* e de *software*, algoritmos tolerantes a falhas e técnicas de projeto de sistemas tolerantes a falhas. Segurança: conceitos básicos, criptografia e tipos de criptografia, mecanismos de proteção e de autenticação, tipos de ataques, m*alwares* e defesas.

Bibliografia Básica

- RAUSAND, M.; HOYLAND, A. *System reliability theory*: models, statistical methods, and applications. 2^a ed. Nova Jersey, EUA: John Wiley & Sons, 2003.
- TANENBAUM, A. S. Sistemas operacionais modernos. 3ª ed. São Paulo: Prentice Hall, 2010. 672p.
- SAHNER, R. A.; TRIVEDI, K.; PULIAFITO, A. *performance and reliability analysis of computer systems*: an example-based approach using the SHARPE software. São Paulo: Springer, 1995.

- DEITEL, H.; DEITEL, P.; STEINBUHLER, K. *Sistemas Operacionais*. 3^a ed. São Paulo: Prentice Hall, 2005. 784p.
- MACHADO, F. B.; MAIA, L. P. *Arquitetura de Sistemas Operacionais*. 5ª ed. Rio de Janeiro: LTC, 2013. 266p.
- TANENBAUM, A. S. *Organização estruturada de computadores*. 6ª ed. Rio de Janeiro: Prentice Hall, 2013. 624p.
- STALLINGS, W. *Arquitetura e organização de computadores*. 8ª ed. Rio de Janeiro: Prentice Hall, 2010. 640p.
- HENNESSY, J. L; PATTERSON, D. A. Arquitetura de computadores: uma abordagem quantitativa. 5ª ed. Rio de Janeiro: Campus, 2013. 744p.

Componente	Carga Horária
Economia	30h

Noções gerais de economia; Mercado: demanda, oferta e equilíbrio; comportamento do consumidor; comportamento do produtor; e estruturas de mercado.

Bibliografia Básica

- MOCHON, Francisco. *Princípios de economia*. 1ª ed. São Paulo: Pearson Prentice Hall, 2007.
- PASSOS, Carlos Roberto Martins, NOGAMI, Otto. *Princípios de Economia*. São Paulo: Pioneira, 2002.
- ROSSETI, José Paschoal. *Introdução à Economia*. 7ª ed. São Paulo: Atlas, 2005.
- VASCONCELLOS, Marco Antonio. Fundamentos de Economia. 1ª ed. Saraiva: São Paulo, 1999.

- EQUIPE DE PROFESSORES DA USP. *Manual de Economia. 1ª ed.* Saraiva: São Paulo, 2000.
- HOLANDA, Nilson. *Introdução à Economia*. 8. ed. São Paulo: Vozes, 2003.
- LOPES, L.M., VASCONCELOS, M.A.S. de. *Manual de microecomia*: nível básico e nível intermediário. 2.ed. São Paulo: Atlas, 2000.
- MANKIW, Gregory *Introdução à Economia*: princípios de micro e macro economia. 2ª ed. São Paulo: Campos 1999.
- SOUZA, Nali de Jesus de; et al. *Introdução à economia*. 2. ed., São Paulo: Atlas, 1997.
- VICENCONTI, Paulo. *Introdução à Economia*. 3ª ed. São Paulo: Frase, 2003.

Economia para Engenharias	60h

Matemática financeira. Análise de substituição de equipamentos. Elaboração e análise econômica de projetos Introdução: conceito de economia, relação com as outras ciências, metodologia. Sistemas econômicos. Evolução histórica das ideias econômicas. Noções de macroeconomia: cálculo do produto, crescimento econômico, emprego, moeda e inflação. Fundamentos básicos de microeconomia: teoria do consumidor, a tecnologia e a teoria da produção e dos custos de produção.

Bibliografia Básica

- ARAÚJO, C. História do Pensamento Econômico: Uma Abordagem Introdutória. São Paulo: Atlas.
- BARRE, R. *Economia Política Vol.1*. São Paulo: Difel, 1978.
- CARDOSO, E. A. Economia Brasileira ao Alcance de Todos. São Paulo: Brasiliense, 1997.

- ELLSWORTH, P. T. Economia Internacional. São Paulo: Atlas, 1978.
- MONTORO FILHO, A, F. et al. Manual de Introdução à Economia. São Paulo: Saraiva, 1983.
- MORCILLO, F. M; TROSTER, R. L. Introdução à Economia. 2ª ed. São Paulo: Makron Books, 1997.
- VASCONCELLOS, M. A; GARCIA, M. E. Fundamentos da Economia. São Paulo: Saraiva, 1998.
- WESSELS, W. J. Economia. São Paulo: Saraiva, 1998.

Componente	Carga Horária
Eletricidade e Magnetismo	60h

Força e campo elétrico. Potencial elétrico. Capacitância e dielétricos. Corrente, resistência e circuitos elétricos. Força e Campo magnético. Força eletromotriz induzida. Indutância. Motores e Geradores Elétricos.

Bibliografia Básica

- TIPLER, P.. A. Física para Cientistas e Engenheiros. 6a ed., LTC, 2012, v.1 e 2.
- RESNICK, R.; HALLIDAY, D., Física. 9a ed., Rio de Janeiro, LTC, 2012, v.1 e 3.
- JOHNSON, D. E.; HILBURN, J. L.; JOHNSON, J. R.. Fundamentos de Análise de Circuitos Elétricos. 4a ed., Rio de Janeiro, LTC, 1994.

- PURCELL, E.M. *Eletricidade e magnetismo*, Curso de Física de Berkeley. 1ª ed. São Paulo: Edgar Blucher, 1973.
- PHYSICAL SCIENCE STUDY COMITTEE, *Física*, Parte IV, Edart, São Paulo, SP, 1970.
- CAMPOS, A. A. Física experimental básica na universidade. Ed UFMG, 2008.
- FEYNMAN, R, *Lições de física*, The Feynman Lectures on Physics, Volume II. 2^a ed. Addison-Wesley, 2006.

Componente	Carga Horária
Eletrônica Analógica	60h

Teoria dos dispositivos semicondutores. Junção PN. Diodos e transistores bipolares: tipos, características e circuitos. Polarização e resposta em frequência para circuitos transistorizados. Amplificadores transistorizados. Amplificadores diferenciais. Amplificadores operacionais: características e circuitos. Osciladores. Filtros. Projeto e construção de circuitos eletrônicos.

Bibliografia Básica

- RAZAVI, Behzad. *Fundamentos de microeletrônica*. Rio de Janeiro: LTC, 2013. 728p. ISBN: 9788521617327.
- BOYLESTAD, Robert L; NASHELSKY, Louis. *Dispositivos eletrônicos e teoria de circuitos*. 8.ed. São Paulo: Pearson Prentice Hall, 2004. 672p. ISBN: 8587918222.
- SEDRA, Adel S; SMITH, Kenneth C. *Microeletrônica*. 5.ed. São Paulo: Pearson, 2007. 847p. ISBN: 9788576050223.

- IRWIN, J. David; NELMS, R. Mark. *Análise básica de circuitos para engenharia*. Rio de Janeiro: LTC, 2016. 679p. ISBN: 9788521621805.
- JOHNSON, David E; HILBURN, John L; JOHNSON, Johnny R. Fundamentos de análise de circuitos elétricos. Rio de Janeiro: LTC, 2012. 539p. ISBN: 9788521612384.
- PERTENCE JÚNIOR, Antonio. Eletrônica analógica: amplificadores operacionais e filtros ativos. 7.ed. rev. e ampl. Porto Alegre: Tekne, 2012. 380p. ISBN: 9788535259230.
- MALVINO, Albert; BATES, David. *Eletrônica Vol. 1.* 8.ed. Porto Alegre: AMGH, 2016. 608p. ISBN: 9788580555769.
- MALVINO, Albert; BATES, David. *Eletrônica Vol.* 2. 8.ed. Porto Alegre: AMGH, 2016. 483p. ISBN: 9788580555929.

Componente	Carga Horária
Engenharia de Software	60h
T	

Visão geral sobre a engenharia de *software*: conceitos básicos, engenharia de sistemas e processos de software. Requisitos de *software*: tipos, engenharia de requisitos e modelos de sistema. Sistemas orientados a objetos: componentes, ferramentas utilizadas na modelagem e metodologias para análise e desenvolvimento.

Bibliografia Básica

- SOMMERVILLE, I. Engenharia de software. 9ª ed. São Paulo: Pearson, 2011. 544p;
- PRESSMAN, R. Engenharia de software: uma abordagem profissional. 7ª ed. Rio de Janeiro: McGraw-Hill, 2011. 780p;
- BEZERRA, E. *Princípios de análise de sistemas com UML*. 2ª ed. Rio de Janeiro: Campus, 2007. 392p.

- PAULA FILHO, W. P. *Engenharia de software*: fundamentos, métodos e padrões. 3ª ed. Rio de Janeiro: LTC, 2009. 1358p;
- PFLEEGER, S. L. *Engenharia de software*: teoria e prática. 2ª ed. São Paulo: Makron Books, 2004;
- LARMAN, C. *Utilizando UML e padrões*. 3ª ed. Porto Alegre: Bookman, 2007. 696p;
- BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. *UML*: guia do usuário. 2ª ed. Rio de Janeiro: Campus, 2012. 552p;
- FLOWER, M. *UML Essencial*: um breve guia para a linguagem padrão de modelagem de objetos. 3ª ed. Porto Alegre: Bookman, 2005. 162p.

Componente	Carga Horária
Estatística	60h

Estatística descritiva. Conjuntos e probabilidades. Variáveis aleatórias. Distribuições de probabilidade. Distribuições especiais de probabilidade. Teoria da amostragem. Teoria da estimação. Testes de hipóteses. Regressão linear e correlação.

Bibliografia Básica

- ANDRADE, Dalton F.; OGLIARI, Paulo J. *Estatística para as ciências agrárias e biológicas com noções de experimentação*. 5.ed. Florianópolis: UFSC, 2013.
- BARBETTA, Pedro A.; REIS, Marcelo M.; BORNIA, Antônio C. *Estatística: para cursos de engenharia e informática*. 3.ed. São Paulo: Atlas, 2010.
- FREUND, John E. *Estatística aplicada: economia, administração e contabilidade.* 11.ed. Porto Alegre: Bookman, 2006.

- BARROW, Michael. Estatística para economia, contabilidade e administração. São Paulo: Ática, 2007.
- FERREIRA, Daniel F. Estatística básica. 2.ed. Lavras: UFLA, 2009.
- HINES, William W et al. *Probabilidade e estatística na engenharia*. 4.ed. Rio de Janeiro: LTC, 2013.
- MONTGOMERY, Douglas C; RUNGER, George C. Estatística aplicada e probabilidade para engenheiros. 4.ed. Rio de Janeiro: LTC, 2009.
- MORETTIN, Pedro A; BUSSAB, Wilton O. *Estatística básica*. 7.ed. São Paulo: Saraiva, 2012.

Componente	Carga Horária
Ética e Legislação	30h

Doutrinas éticas fundamentais; mudanças histórico-sociais; moral e moralidade; princípio da responsabilidade; regulamentação do exercício profissional; as relações na prestação de serviços em face do código do consumidor, deveres profissionais; código de ética.

Bibliografia Básica

- CANCLINI, N. G. Consumidores e cidadãos: conflitos multiculturais da globalização. Rio de Janeiro: UFRJ, 1995.
- GIACOMINI FILHO, G. Consumidor versus propaganda. São Paulo: Summus, 1991.
- VÁZQUEZ, Adolfo Sánchez. Ética. Rio de Janeiro: Civilização Brasileira, 2002.

- FEATHERSTONE, M. Cultura de consumo e pós-modernismo. São Paulo: Studio Nobel,1995.
- FEATHERSTONE, M. *O desmanche da cultura: globalização, pós-modernismo e identidade*. São Paulo: Studio Nobel/SESC, 1997.
- LEVY, A. Propaganda: a arte de gerar descrédito. Rio de Janeiro: FGV, 2003.
- QUESSADA, D. O poder da publicidade na sociedade consumida pelas marcas: como a globalização impõe produtos, sonhos e ilusões. São Paulo: Futura, 2003.
- SANT'ANNA, A. Propaganda: teoria, técnica e Prática. São Paulo: Pioneira, 1998.
- SUNG, J. M., SILVA, J. C. Conversando sobre ética e sociedade. Petrópolis: Vozes, 1995..
- TOSCANI, O. *A publicidade é um cadáver que nos sorri*. Rio de Janeiro: Editora Ediouro, 1996.
- VALLS, Álvaro L. M. *O que é ética*. São Paulo:Editora Brasiliense, 1993.

Componente	Carga Horária
Expressão Gráfica	60h
Ementa	

Introdução. Geometria descritiva: ponto, reta, plano e figuras geométricas. Desenho Técnico: normas, escalas, cotas, vistas ortográficas e perspectivas. Introdução ao desenho auxiliado por computador.

Bibliografia Básica

- MORLING, KEN. Desenho técnico e geométrico. Tradução de Alberto Dias Vieira. 3. ed. Rio de Janeiro: Alta Books, . 2016. 360p.
- SILVA, A., et al. Desenho técnico moderno. Tradução de Antônio Eustáquio de Melo Pertence, Ricardo Nicolau Nassar Koury. 4. ed.. Rio de Janeiro: LTC, 2006. 475p-
- MONTENEGRO, Gildo Aparecido. A perspectiva dos profissionais: sombras, insolação e axonometria. 2. ed. São Paulo: Edgard Blücher, 2010. 164 p.
- FRENCH, Thomas E.; VIERCK, Charles J. Desenho técnico e tecnologia gráfica. 7. ed. São Paulo: Globo, 2002. 1093 p.

- SATHLER, Nilson de Sousa. Notas de aula de desenho: ponto, reta, plano, escalas numérica e gráfica, e vistas ortográficas. 2. ed. Mossoró: ENA/ESAM, 1999. 185 p. (Boletim Técnico-Científico 26).
- FORSETH, K. Projetos em Arquitetura. 1ª ed. Editora Hemus. São Paulo. 2004 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10.068: Folha de desenho - layout e dimensões. Rio de Janeiro, 1987.
- NBR 8196: Desenho técnico emprego de escala. Rio de Janeiro, 1999.
- __ NBR 8403: Aplicação de linhas em desenho tipos de linhas e larguras de linhas. Rio de Janeiro, 1984.
- NBR 10067: Princípios gerais de representação em desenho técnico. Rio de 6. Janeiro, 1995.
- NBR 10126: Cotagem em desenho técnico. Rio de Janeiro, 1987.
- __ NBR 10582: Apresentação da folha para desenho técnico. Rio de Janeiro, 1988.
- NBR 13142: Desenho técnico Dobramento de cópia. Rio de Janeiro, 1999.

Componente	Carga Horária
Filosofia da Ciência	60h

Concepções e abordagens da ciência. Demarcação científica, O problema do método científico – fundamento, domínio e pluralidade. Ciência e tecnologia. Deontologia científica.

Bibliografia Básica

- ALVES, Rubem. *Filosofia da ciência: introdução ao jogo e suas regras.* 19 ed. São Paulo: Loyola, 2000.
- CHALMERS, Alan. O que é ciência, afinal? Brasília: Brasíliense, 1993.
- FEYERABEND, Paul. Contra o método. 2ed. São Paulo: Unesp, 2011.

- HARARI, Yuval. Sapiens: uma breve história da humanidade. Porto Alegre: L&PM, 2015.
- KUHN, Thomas. A estrutura das revoluções científicas. São Paulo: Perspectiva, 2013.
- LAKATOS, Inri; MUSGRAVE, A. (org.) A crítica e o desenvolvimento do conhecimento. São Paulo: Cultrix, 1979.
- MARCONI, Maria; LAKATOS, Eva. Fundamentos de Metodologia científica. 8ed. São Paulo: Atlas, 2017.
- POPPER, Karl. A lógica da investigação científica. 2ed. São Paulo: Cultrix, 2013.

Componente	Carga Horária
Filosofia da Ciência e Metodologia Científica	60h

Filosofia da ciência. Deontologia científica. Pesquisa científica. Método científico. Pesquisa empírica. Pesquisa bibliográfica. Projeto de pesquisa. Fases da pesquisa. Redação técnica. Apresentação de trabalhos científicos.

Bibliografia Básica

- JAPIASSU, H. *As Paixões da Ciência: estudo de história das ciências.* São Paulo: Letras e letras, 1991.
- ECO, H. Como se faz uma tese/tradução Gilson Cesar Cardoso de Souza. São Paulo: Perspectiva, 2012.
- ESTEVES, M.J. *Pensamento Sistêmico: o novo paradigma da ciência*. 2ª ed. Campinas: Papirus, 2003.

- CASTRO, Claúdio de Moura. *Como Redigir e Apresentar um trabalho Científico*. São Paulo: Pearson, 2011
- SEVERINO, A. J. *Metodologia do Trabalho Científico*. 23. Ed. São Paulo: Cortez, 2007.
- BARROS, Aidil de J. P.; LEHFELD, N. A. S. *Projeto de pesquisa propostas metodológicas*. Petrópolis: Vozes, 2001.
- LAKATOS, E. M. &; MARCONI, M. de A. *Fundamentos de metodologia científica*. 6. ed. São Paulo: Atlas, 2005.
- RUSSELL, B., Os Problemas da Filosofia, Arménio Amado Ed, Coimbra, 1959.

Componente	Carga Horária
Fundamentos de Ciência dos Materiais	60h

Estruturas Cristalina, Difusão, Propriedades Mecânicas; Introdução aos materiais cerâmicos e poliméricos – Estruturas e propriedades; Introdução aos materiais compósitos.

Bibliografia Básica

- CALLISTER JR., William D; RETHWISCH, David G. Ciência e engenharia de materiais: uma introdução. 8.ed. Rio de Janeiro: LTC, 2012. 817p. ISBN: 9788521621249.
- SHACKELFORD, James F. *Ciência dos materiais*. 6. ed. São Paulo: Pearson Prentice Hall, 2008. 556 p. ISBN: 9788576051602.
- ASKELAND, Donald R; PHULÉ, Pradeep P. *Ciência e engenharia dos materiais*. 5^a ed. São Paulo: Cengage Learning, 2008. 556 p. ISBN: 9788522105984.

- VAN VLACK, Lawrence Hall. *Princípios de ciência dos materiais*. 2ª ed. São Paulo: Blucher, 2008 reimp. 427 p. ISBN: 9788521201212.
- SCHMIDT, Walfredo. *Materiais elétricos: condutores e semicondutores*. 2.ed. São Paulo: Blucher, 2008. 141 p.: v.1. ISBN: 9788521200888.

Componente	Carga Horária
Geometria Analítica	60h

Vetores no plano e no espaço. Retas. Planos. Cônicas. Translação e rotação de eixos. Noções de quádricas.

Bibliografia Básica

- LEITHOLD, L. *O Cálculo com Geometria Analítica*, Vol. 1. 3a ed. São Paulo: Editora Habra Ltda. 1994.
- LIPSCHUTZ, S. *Álgebra linear: teoria e problemas*. 3ª ed. São Paulo: Makron Books, 1994.
- STEINBRUCH, A . , WINTERLE, P. *Geometria Analítica*. 2a ed. São Paulo: McGraw-Hill, 2012.

- REIS, G.L. DOS; SILVA, V. DA; *Geometria Analítica*. 2a ed. Rio de Janeiro: LTC, 1996.
- BOULOS, P. Geometria Analítica e Vetores, 5ª ed. São Paulo: Macron Books, 1993.
- LARSON, R.C.; HOSTETTER, R.P.; EDWARDS, B.H.; Curvas planas, equações paramétricas e coordenadas polares, em Cálculo com Geometria Analítica, volume 2. 1a ed. LTC, 1998.
- Camargo, Ivan de. Geometria analítica um tratamento vetorial. 3. ed. 2005

Componente	Carga Horária
Introdução a Computação e aos Sistemas de Informação	60h

Sistemas de numeração e suas conversões. Sistemas de codificação. Conceitos básicos em computação e informática e aplicações. Elementos de *hardware* e de *software* e suas formas de interação. Informação. Fundamentos dos Sistemas de Informação. Tipologia dos Sistemas de Informação. Sistemas de Informação nas organizações. Processo decisório e informativo. Tecnologia da Informação.

Bibliografia Básica

- O'BRIEN, J. A. Sistemas de Informação e as Decisões Gerenciais Na Era da Internet. 3ª ed. São Paulo: Saraiva, 2011.
- STAIR, R. M. *Princípios de Sistemas de Informação*: Uma Abordagem Gerencial. 4ª ed. Rio de Janeiro: LTC, 2002.
- RAINER JR, R. K.; CEGIELSKY, C. G. *Introdução a Sistemas de Informação*. 3ª ed. Rio de Janeiro: Elsevier, 2012. 472p.
- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. *Sistemas digitais*: Princípios e Aplicações. 11ª ed. São Paulo: Prentice Hall, 2011. 840p.

- REZENDE, D. A.; ABREU, A. F. *Tecnologia da Informação Aplicada a Sistemas de Informação Empresariais*. 9ª ed. São Paulo: Atlas, 2013. 376p.
- REZENDE, D. A. Sistemas de Informação Organizacionais: Guia Prático para Projetos em Cursos de Administração, Contabilidade e Informática. 5ª ed. São Paulo: Atlas, 2013. 160p.
- BATISTA, E. O. *Sistema de Informação*: O Uso Consciente da Tecnologia Para O Gerenciamento. 2ª ed. São Paulo: Saraiva, 2012.
- CAPUANO, F. G.; IDOETA, I. V. *Elementos da eletrônica digital*. 41ª ed. São Paulo: Érica, 2012. 544p.
- JUNIOR, H. A. *Fundamentos de informática* Eletrônica digital. Rio de Janeiro: LTC, 2010. 220p.

Componente	Carga Horária
Introdução às Funções de Várias Variáveis	60h

Funções Vetoriais. Funções de duas variáveis. Limite e continuidade. Derivadas parciais. Gradiente. Campos Vetoriais. Derivadas direcionais. Integrais múltiplas e Integrais de linha.

Bibliografia Básica

- LEITHOLD, Louis. *O Cálculo com Geometria Analítica*, Vol. 2, 3ª ed. editora HARBRA Ltda. São Paulo.
- GUIDORIZZI, Hamilton Luiz. *Um Curso de Cálculo*, Vol. 3. 5ª ed. São Paulo : LTC (Livros Técnicos e Científicos Editora), 2002.
- GUIDORIZZI, Hamilton Luiz. *Um Curso de Cálculo*, Vol. 4. 5ª ed. São Paulo : LTC (Livros Técnicos e Científicos Editora), 2002.

- AVILA, G Cálculo 3. 7ª ed. Editora LTC, 2006.
- HUGHES-HALLET, Deborah; McCALLUM, William G.; GLEASON, Andrew M. et al. *Cálculo A Uma e a Várias Variáveis -* Vol. 1, 5ª edição, São Paulo : LTC
- STEWART, James, Cálculo Vol. 2 . 4a Edição, Ed. Pioneira, São Paulo, 2001.

•	Carga Horária
Instrumentação	60h

Fundamentos dos sistemas de medição. Erros e incerteza. Grandezas e sensores. Interfaces com sensores e condicionamento de sinais. Conversão A/D e D/A. Reconstrução digital de valores de medição. Instrumentação industrial.

Bibliografia Básica

- FIALHO, Arivelto Bustamante. *Instrumentação industrial:* conceitos, aplicações e análises. 7.ed. São Paulo: Érica, 2010. 280p. ISBN: 9788571949225.
- THOMAZINI, Daniel; ALBUQUERQUE, Pedro Urbano Braga De. *Sensores industriais:* fundamentos e aplicações. 8.ed. atual. São Paulo: Érica, 2011. 224p. ISBN: 9788536500713.
- BALBINOT, Alexandre; BRUSAMARELLO, Valner João. *Instrumentação e fundamentos de medidas*. 2.ed. Rio de Janeiro: LTC, 2011. 492p. (v.1) ISBN: 9788521617549.

- BALBINOT, Alexandre; BRUSAMARELLO, Valner João. *Instrumentação e fundamentos de medidas*. 2.ed. Rio de Janeiro: LTC, 2011. 492p. (v.2) ISBN: 9788521618799.
- RAZAVI, Behzad. *Fundamentos de microeletrônica*. Rio de Janeiro: LTC, 2013. 728p. ISBN: 9788521617327.
- SEDRA, Adel S; SMITH, Kenneth C. *Microeletrônica*. 5.ed. São Paulo: Pearson, 2007. 847p. ISBN: 9788576050223.
- BOYLESTAD, Robert L; NASHELSKY, Louis. *Dispositivos eletrônicos e teoria de circuitos*. 8.ed. São Paulo: Pearson Prentice Hall, 2004. 672p. ISBN: 8587918222.
- PERTENCE JÚNIOR, Antonio. *Eletrônica analógica:* amplificadores operacionais e filtros ativos. 7.ed. rev. e ampl. Porto Alegre: Tekne, 2012. 380p. ISBN: 9788535259230.
- MALVINO, Albert. *Eletrônica*. Porto Alegre: AMGH, 2007. 556 p. ISBN: 978859788577260232.

Componente	Carga Horária
Laboratório de Algoritmos	30h

Práticas de programação envolvendo os seguintes tópicos: Introdução aos algoritmos; Formas de representações de algoritmos; Variáveis, constantes, operadores e expressões; Estruturas de seleção e de repetição; Vetores e matrizes; Funções e procedimentos; Abstração e resolução de problemas utilizando algoritmos.

Bibliografia Básica

- SALVETTI, D. D.; BARBOSA, L. M. *Algoritmos*. São Paulo: Makron Books, 2004. 300p.
- MIZRAHI, V. V. Treinamento em linguagem C. 2ª ed. São Paulo: Prentice-Hall, 2008.
 432p.
- DEITEL, P.; DEITEL, H. C: como programar. 6ª ed. São Paulo: Pearson, 2007. 848p.

- DEITEL P., DEITEL H. C++: how to program. 8^a ed. Pearson, 2011. 1104p.
- SOUZA, M. A. F.; GOMES, M. M.; SOARES, M. V.; CONCILIO, R. *Algoritmos e lógica de programação*. 2ª ed. São Paulo: Thomson Learning, 2012. 262p.
- FAHER, H.; BECKER, C. G.; FARIA, E. C.; MATOS, H. F.; SANTOS, M. A.; MAIA, M. L. *Algoritmos estruturados*. 3ª ed. Rio de Janeiro: LTC, 1999. 304p.
- MANZANO, J. A. N. G.; OLIVEIRA, J. F. *Estudo dirigido de algoritmos*. 15ª ed. São Paulo: Érica, 2012. 240p.
- MANZANO, J. A. N. G.; OLIVEIRA, J. F. *Algoritmos* Lógica para desenvolvimento de programação de computadores. 26ª ed. São Paulo: Érica, 2012. 328p.

Componente	Carga Horária
Laboratório de Algoritmos e Estrutura de Dados I	30h

Práticas de programação envolvendo os seguintes tópicos: Registros; Ponteiros e manipulação de arquivos; Introdução a complexidade de algoritmos (notações de melhor, pior e caso médio); Algoritmos de busca e de ordenação; Pilhas, filas e listas e suas operações e algoritmos; Abstração e resolução de problemas utilizando algoritmos e estruturas de dados.

Bibliografia Básica

- ASCENCIO, A. F. G. Estrutura de Dados. São Paulo: Pearson, 2011. 448p.
- SZWARCFITER, J. L.; MARKENZON L. Estruturas de Dados e Seus Algoritmos. 3ª ed. Rio de Janeiro: LTC, 2010. 318p.
- PREISS, B. Estruturas de Dados e Algoritmos. Rio de Janeiro: Campus, 2001. 584p.

- ZIVIANI, N. *Projeto de Algoritmos com Implementações em Java e C++*. Thomson Learning, 2006. 642p.
- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. *Algoritmos*: Teoria e Prática. 3ª ed. Rio de Janeiro: Campus, 2012. 944p.
- DEITEL, P.; DEITEL, H. C: Como Programar. 6^a ed. São Paulo: Pearson, 2007. 848p.
- TOSCANI, L. V.; VELOSO, P. A. S. *Complexidade de Algoritmos Vol. 13.* 3ª ed. Porto Alegre: Bookman, 2012. 280p. (Série de livros didáticos informática UFRGS).
- LOPES, A.; GARCIA, G. *Introdução a Programação*. Rio de Janeiro: Campus, 2002.
 488p.

Componente	Carga Horária
Laboratório de Algoritmos e Estrutura de Dados II	30h

Práticas de programação envolvendo os seguintes tópicos: Árvores (binária, binária de busca e AVL) e suas operações e algoritmos; Tabelas de dispersão e seus algoritmos e operações; Listas de prioridades e seus algoritmos e operações; Grafos e seus algoritmos e operações; Abstração e resolução de problemas utilizando algoritmos e estruturas de dados.

Bibliografia Básica

- ASCENCIO, A. F. G. Estrutura de Dados. São Paulo: Pearson, 2011. 448p.
- SZWARCFITER, J. L.; MARKENZON L. Estruturas de Dados e Seus Algoritmos. 3ª ed. Rio de Janeiro: LTC, 2010. 318p.
- PREISS, B. Estruturas de Dados e Algoritmos. Rio de Janeiro: Campus, 2001. 584p.

- ZIVIANI, N. *Projeto de Algoritmos com Implementações em Java e C++*. Thomson Learning, 2006. 642p.
- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. *Algoritmos*: Teoria e Prática. 3ª ed. Rio de Janeiro: Campus, 2012. 944p.
- DEITEL, P.; DEITEL, H. C: Como Programar. 6^a ed. São Paulo: Pearson, 2007. 848p.
- TOSCANI, L. V.; VELOSO, P. A. S. *Complexidade de Algoritmos Vol. 13.* 3ª ed. Porto Alegre: Bookman, 2012. 280p. (Série de livros didáticos informática UFRGS).
- LOPES, A.; GARCIA, G. *Introdução a Programação*. Rio de Janeiro: Campus, 2002.
 488p.

Laboratório de Circuitos Digitais	30h

Linguagem de descrição de *hardware*: características da linguagem, modelo de simulação, descrição por fluxo de dados, comportamental e estrutural, simulação e síntese. Descrição, simulação e síntese de circuitos combinacionais. Descrição, simulação e síntese de circuitos sequenciais.

Bibliografia Básica

- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. *Sistemas digitais*: princípios e aplicações. 11ª ed. São Paulo: Prentice Hall, 2011. 840p.
- VAHID, F. *Sistemas digitais*: projeto, otimização e HDLS. Porto Alegre: Bookman, 2008. 560p;
- PEDRONI, V. A. *Eletrônica digital moderna e VHDL*. Rio de Janeiro: Campus, 2010. 648p.

- TOKHEIM, R. *Fundamentos de eletrônica digital* Vol. 1: Sistemas combinacionais. Rio de Janeiro: McGraw-Hill, 2013. 326p.
- TOKHEIM, R. *Fundamentos de eletrônica digital* Vol. 2: Sistemas seqüenciais. Rio de Janeiro: McGraw-Hill, 2013. 274p.
- JUNIOR, H. A. *Fundamentos de informática* Eletrônica digital. Rio de Janeiro: LTC, 2010. 220p.
- CAPUANO, F. G.; IDOETA, I. V. *Elementos da eletrônica digital*. 41ª ed. São Paulo: Érica, 2012. 544p;
- NULL, L.; LOBUR, J. *Princípios básicos de arquitetura e organização de computadores*. 2ª ed. Porto Alegre: Bookman, 2010. 822p.

Componente	Carga Horária
Laboratório de Eletricidade e Magnetismo	30h

Experimentos associados ao conteúdo da disciplina. Força e campo elétrico. Potencial elétrico. Capacitância e dielétricos. Corrente, resistência e circuitos elétricos. Força e Campo magnético. Força eletromotriz induzida. Indutância. Motores e Geradores Elétricos.

Bibliografia Básica

- ORSINI, L. Q., Curso de Circuitos Elétricos. 2a ed., São Paulo, Edgard Blucher, 2004
- COTRIM, A. A. M. B.. *Instalações Elétricas*. 4a ed., São Paulo, Prentice Hall Brasil, 2009.
- NAHVI, M.; EDMINISTER, J.. *Teoria e Problemas de Circuitos Elétricos*. 2a ed., Porto Alegre, Bookman, 2005.

- CAMPOS, A. A. Física experimental básica na universidade. Ed UFMG, 2008.
- FEYNMAN, R, *Lições de física, The Feynman Lectures on Physics*, Volume II. 2^a ed. Addison-Wesley, 2006.
- RESNICK, R.; HALLIDAY, D., Física. 9a ed., Rio de Janeiro, LTC, 2012, v.1 e 3.

Componente	Carga Horária
Laboratório de Eletrônica Analógica	30h

Práticas envolvendo diodos e transistores bipolares. Par diferencial. Fontes e espelhos de corrente. Aplicações com amplificadores operacionais: Topologia inversora e não inversora. Odciladores: Onda quadrada, onda triangular e onda senoidal. Filtros ativos.

Bibliografia Básica

- RAZAVI, Behzad. *Fundamentos de microeletrônica*. Rio de Janeiro: LTC, 2013. 728p. ISBN: 9788521617327.
- BOYLESTAD, Robert L; NASHELSKY, Louis. *Dispositivos eletrônicos e teoria de circuitos*. 8.ed. São Paulo: Pearson Prentice Hall, 2004. 672p. ISBN: 8587918222.
- SEDRA, Adel S; SMITH, Kenneth C. *Microeletrônica*. 5.ed. São Paulo: Pearson, 2007. 847p. ISBN: 9788576050223.

- IRWIN, J. David; NELMS, R. Mark. *Análise básica de circuitos para engenharia*. Rio de Janeiro: LTC, 2016. 679p. ISBN: 9788521621805.
- JOHNSON, David E; HILBURN, John L; JOHNSON, Johnny R. Fundamentos de análise de circuitos elétricos. Rio de Janeiro: LTC, 2012. 539p. ISBN: 9788521612384.
- PERTENCE JÚNIOR, Antonio. *Eletrônica analógica:* amplificadores operacionais e filtros ativos. 7.ed. rev. e ampl. Porto Alegre: Tekne, 2012. 380p. ISBN: 9788535259230.
- MALVINO, Albert; BATES, David. *Eletrônica Vol. 1.* 8.ed. Porto Alegre: AMGH, 2016. 608p. ISBN: 9788580555769.
- MALVINO, Albert; BATES, David. *Eletrônica Vol.* 2. 8.ed. Porto Alegre: AMGH, 2016. 483p. ISBN: 9788580555929.

Componente	Carga Horária
Laboratório de Mecânica Clássica	30h

Experimentos associados ao conteúdo da disciplina Mecânica Clássica. Unidades, Grandezas Físicas e Vetores. Movimento Retilíneo e Movimento em Duas e Três Dimensões. Leis de Newton e suas Aplicações. Energia, Trabalho e Conservação de Energia. Impulso e Momento Linear. Equilíbrio dos Corpos Rígidos (extensos), Torque e Dinâmica da Rotação.

Bibliografia Básica

- WATARI, K. Mecânica Clássica, volume 1. 2a. ed. Editora Livraria da Física, 2004.
- ABREU, M.C; MATIAS, L; PERALTA, L.F. *Física Experimental uma Introdução*. 1ª ed. Lisboa: Editorial Presença, 1994
- GOLDSTEIN H., POOLE C. P E SAFKO J. *Classical Mechani*. 3a. ed., Prentice Hall, 2002.

- YOUNG, Hugh D. Física I: mecânica 12.ed. 2008
- OLIVEIRA. Introdução aos Princípios de Mecânica Clássica. São Paulo:LTC.
- TAVARES, Armando Dias; OLIVEIRA, J. Umberto Cinelli L. de. *Mecânica Física Abordagem Experimental e Teórica* São Paulo: LTC.

Componente	Carga Horária
Laboratório de Ondas e Termodinâmica	60h

Experimentos associados ao conteúdo da disciplina Ondas e Termodinâmica. Elasticidade. Oscilações. Estática dos Fluidos. Dinâmica dos Fluidos e Viscosidade. Temperatura e Dilatação. Calor. Propagação do Calor. Propriedades Térmicas da Matéria. Propriedades Moleculares da Matéria. Leis da Termodinâmica. Propagação de Ondas Mecânicas. Corpos Vibrantes. Fenômenos acústicos

Bibliografia Básica

- RESNICK, R., HALLIDAY, D., WALKER, J., *Fundamentos de Física*. Vol 2. 9^a ed. Rio de Janeiro: LTC, 2012.
- TIPLER, P.A, *Física para Cientistas e Engenheiros* vol 3. 6ª ed. Editora Guanabara Koogan S.A. 2012.
- YOUNG, Hugh D.; FREEDMAN, Roger A. *Física II: Termodinâmica e ondas.* 12.ed. São Paulo: Addison Wesley, 2008.

- ALONSO, Marcelo; FIN, Edward. *Física: Um curso universitário*. 2ª ed. São Paulo: Edgard Blucher, 1972.
- NUSSENZVEIG, H. Moysés. *Curso de física básica*. 4ª ed .São Paulo: Edgard Blücher, 2002.

Componente	Carga Horária
Mecânica Clássica	60h

Unidades, Grandezas Físicas e Vetores. Introdução ao Movimento em Uma, Duas e Três Dimensões. Leis de Newton e suas Aplicações. Energia, Trabalho e Conservação de Energia. Impulso e Momento Linear. Equilíbrio dos Corpos Rígidos (Extensos), Torque e Dinâmica da Rotação.

Bibliografia Básica

- ALONSO, M., FINN, E. J, *Física: um curso universitário*, volume 1. 2ª ed. São Paulo-SP: Editora Blucher, 2014.
- RESNICK, R., HALLIDAY, D., WALKER, J. Fundamentos de Física, Vol 1.9ª ed. 2012.
- TIPLER, P. A. Física Vol1. 6ª edição. Editora LTC. 2000.

- YOUNG, Hugh D. Física I: mecânica 12.ed. 2008
- OLIVEIRA. Introdução aos Princípios de Mecânica Clássica. São Paulo:LTC
- TAVARES, Armando Dias; OLIVEIRA, J. Umberto Cinelli L. de. *Mecânica Física Abordagem Experimental e Teórica* São Paulo: LTC

Componente	Carga Horária
Ondas e Termodinâmica	60h

Elasticidade. Oscilações. Estática dos Fluidos. Dinâmica dos Fluidos e Viscosidade. Temperatura e Dilatação. Calor. Transmissão de Calor. Propriedades Térmicas da Matéria. Propriedades Moleculares da Matéria. Leis da Termodinâmica. Propagação de Ondas Mecânicas. Corpos Vibrantes. Fenômenos Acústicos.

Bibliografia Básica

- RESNICK, R., HALLIDAY, D., WALKER, J., *Fundamentos de Física*. Vol 2. 9^a ed. Rio de Janeiro: LTC, 2012.
- TIPLER, P.A, *Física para Cientistas e Engenheiros vol 3*. 6ª ed. Editora Guanabara Koogan S.A. 2012.
- YOUNG, Hugh D.; FREEDMAN, Roger A. *Física II: Termodinâmica e ondas*. 12.ed. São Paulo: Addison Wesley, 2008.

- ALONSO, Marcelo; FIN, Edward. *Física: Um curso universitário*. 2ª ed. São Paulo: Edgard Blucher, 1972.
- NUSSENZVEIG, H. Moysés. *Curso de física básica*. 4ª ed .São Paulo: Edgard Blücher, 2002.

Componente	Carga Horária
Programação Orientada a Objetos	60h

Conceitos básicos da orientação a objetos. Herança. Polimorfismo. Abstração e resolução de problemas utilizando Programação Orientada a Objetos. Práticas de programação envolvendo Programação Orientada a Objetos.

Bibliografia Básica

- BARNES, D. J.; KÖLLING, M. *Programação orientada a objetos com Java*. 4ª ed. São Paulo: Pearson, 2009. 480p.
- DEITEL, P.; DEITEL, H. *Java*: como programar. 8ª ed. São Paulo: Pearson, 2010. 1176p.
- DEITEL P., DEITEL H. C++: how to program. 8^a ed. Pearson, 2011. 1104p.

- SINTES, A.; *Aprenda programação orientada a objetos em 21 dias.* São Paulo: Makron Books, 2002.
- SANTOS, R. *Introdução à programação orientada a objetos usando JAVA*. 2ª ed. Rio de Janeiro: Campus, 2013. 336p.
- SCHILDT, H. Java para iniciantes. 5^a ed. Porto Alegre: Bookman, 2013. 632p.
- STROUSTRUP, B. *Princípios e práticas de programação com C++*. Porto Alegre: Bookman, 2012. 1244p.
- HUBBARD, J. R. *Programação em C*++. 2ª ed. Porto Alegre: Bookman, 2003. 392p (Coleção Schaum).

Componente	Carga Horária
Processamento Digital de Sinais	60h

Sinais e sistemas discretos no tempo. Amostragem. Transformada Z. Transformada de Fourier de tempo discreto. Transformada discreta de Fourier. Transformadas rápidas de Fourier. Projeto de filtros digitais. Filtros adaptativos. DSPs.

Bibliografia Básica

- DINIZ, Paulo S. R; SILVA, Eduardo A. B. Da; NETTO, Sergio L.. *Processamento digital de sinais:* projeto e análise de sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976p. ISBN: 9788582601235.
- OPPENHEIM, Alan V; WILLSKY, Alan S. *Sinais e sistemas*. 2.ed. São Paulo: Pearson Prentice Hall, 2010. 568p. ISBN: 9788576055044.
- LATHI, B. P; DING, Zhi. *Sistemas de comunicações analógicos e digitais modernos*. Rio de Janeiro: LTC, 2012. 838p. ISBN: 9788521620273.

- OPPENHEIM, Alan V; SCHAFER, Ronal W.. *Discrete time signal processing*. 3.ed. New Jersey: Pearson, 2010. 1108p. ISBN: 0131988425.
- PROAKIS, John G; MANOLAKIS, Dimitris G.. *Digital signal processing*. 4.ed. New Jersey: Prentice Hall, 2007. 1084p. ISBN: 0131873741.
- HAYKIN, Simon; MOHER, Michael. *Sistemas de comunicação*. 5.ed. Porto Alegre: Bookman, 2011. 512p. ISBN: 9788577807253.
- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- HSU, Hwei. *Sinais e Sistemas*. 2.ed. Porto Alegre: Bookman, 2012. 495p. (Coleção schaum) ISBN: 9788577809387.

Componente	Carga Horária
Química Geral	60h

Estrutura atômica e classificação periódica dos elementos; Ligação química. Funções Inorgânicas; Reações Químicas e Cálculo Estequiométrico; Soluções, Termoquímica. Gases; Cinética química; Equilíbrios químicos.

Bibliografia Básica

- BROWN, LeMay e Bursten. *Química: Ciência Central*. 9a ed. São Paulo: Pearson, 2007.
- ATKINS e JONES. Princípios de Química: Questionando a vida moderna e o meio ambiente. 3a. Ed. Porto Alegre: Bookman, 2006.
- SANTOS, W. L P, *Química & Sociedade*, Vol. Único. 1a ed. São Paulo: Nova Geração, 2005.

- PERUZZO. F.M.; CANTO. E.L., *Química na abordagem do cotidiano*, volume 1. 4ª ed. São Paulo: Editora Moderna, 2006.
- USBERCO, J; Salvador, E. *Química Geral*. 15a ed. São Paulo: Saraiva, 2014.

Componente	Carga Horária
Matemática Discreta	60h

Métodos de demonstração. Teoria dos conjuntos. Relações. Relações de ordem e de equivalência. Recursão e indução matemática. Noções de estruturas algébricas. Elementos de teoria dos números. Contagem.

Bibliografia Básica

- GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação: um tratamento moderno de matemática discreta. 5ª ed. Rio de Janeiro: LTC, 2010;
- ROSEN, K. H. *Matemática discreta e suas aplicações*. 6ª ed. Rio de Janeiro: McGraw-Hill, 2009. 982p;
- MENEZES, P. B. *Matemática Discreta para Computação e Informática*. 4ª ed. Porto Alegre: Bookman, 2013. xxi, 348p.

- SCHEINERMAN, E. R. *Matemática Discreta: uma introdução*. São Paulo: Cengage Learning, 2013;
- MENEZES, P. B.; TOSCANI, L. V.; LÓPEZ, J. G. *Aprendendo matemática discreta com exercícios*. Porto Alegre: Bookman, 2009. 356p.;
- LIPSCHUTZ, S.; LIPSON, M. *Matemática discreta*. 3ª ed. Porto Alegre: Bookman, 2013. 484p.;
- ABE, J. M.; PAPAVERO, N. *Teoria intuitiva dos conjuntos*. São Paulo: Makron Books, 1992;
- EPP, S.S.. Discrete mathematics with applications. 5th ed. EUA: Cengage Learning, 2019. 984p.

Componente	Carga Horária
Redes de Computadores	60h

Introdução às redes de computadores: elementos, meios físicos, tipos (PAN, LAN, MAN e WAN), dispositivos de conexão e topologias. Modelos de referência: OSI e TCP/IP. Cabeamento estruturado. Camada de enlace: objetivos, padrões e mecanismos de controle de acesso ao meio. Camada de rede: objetivos, protocolos e algoritmos de roteamento. Camada de transporte e de aplicação: objetivos e protocolos.

Bibliografia Básica

- KUROSE, J. F.; ROSS K W. *Redes de Computadores e a Internet:* uma abordagem top-down. 5^a ed. São Paulo: Pearson, 2010. 240p.
- TANENBAUM, A. S; WETHERALL, D. *Redes de Computadores*. 5ª ed. São Paulo: Pearson, 2011. 582p. ISBN: 9788576059240.
- COMER, D. E. *Redes de Computadores e Internet:* abrange transmissão de dados, ligações inter-redes, web e aplicações. 4ª ed. Porto Alegre: Bookman, 2009. 720p.

- STALLINGS, W. *Arquitetura e organização de computadores*. 8ª ed. Rio de Janeiro: Prentice Hall, 2010. 624p. ISBN: 9788576055648.
- FOROUZAN, B. A. *Comunicação de dados e redes de computadores*. 4ª ed. Rio de Janeiro: McGraw-Hill, 2008. 1134p.
- ALBUQUERQUE, E. Q. *QoS Qualidade de Serviços em Redes de Computadores*. Rio de Janeiro: Campus, 2013. 264p.
- PINHEIRO, M. S. *Guia completo de cabeamento de redes*. 2.ed. Rio de Janeiro: Elsevier, 2015. 312p.
- HAYKIN, S.; MOHER, M. Sistemas modernos de comunicação sem-fio. Porto Alegre: Bookman, 2008. 580p.

Componente	Carga Horária
Seminário de Introdução ao Curso	30h

Áreas de atuação do profissional de TI. Prática de trabalho do profissional de TI. O profissional de TI e sua relação com a sociedade. Automação e sua relação com o profissional de TI. Novos Paradigmas da Computação.

Bibliografia Básica

- O'BRIEN, J. A. Sistemas de Informação e as Decisões Gerenciais Na Era da Internet. 3ª ed. São Paulo: Saraiva, 2011.
- ASSESPRO. *Código de Ética*. Paraná: Associação das Empresas Brasileiras de Tecnologia da Informação. Estatuto Social, 1982.
- OLIVEIRA, P. S. *Introdução à Sociologia*. São Paulo: Ática, 2002.

- RAINER JR, R. K.; CEGIELSKY, C. G. *Introdução a Sistemas de Informação*. 3ª ed. Rio de Janeiro: Elsevier, 2012. 472p.
- BARRE, R. Economia Política Vol.1 São Paulo: Difel, 1978.
- CARDOSO, E. A. *Economia Brasileira ao Alcance de Todos*. São Paulo: Brasiliense, 1997.
- ALVES, R. *Filosofia da Ciência*: Introdução ao Jogo e às Suas Regras. São Paulo: Loyola, 2005.
- DORNELAS, J. C. A. *Empreendedorismo*: Transformando Idéias em Negócios. 5ª ed. Rio de Janeiro: Empreende/LTC, 2014.

Componente	Carga Horária
Sinais e Sistemas	90h

Definição e caracterização de sinais e sistemas. Análise no domínio do tempo de sistemas em tempo contínuo e discreto: resposta de estrada nula, resposta ao impulso, convolução e estabilidade. Transformada de Laplace e Z: definição, propriedades, aplicações a resolução de EDO/ED e realização de sistemas. Séries de Fourier de sinais em tempo contínuo e discreto. Existência e convergência da série de Fourier. Resposta de sistemas LIT a entradas periódicas. Transformada de Fourier em tempo contínuo e discreto: definição, propriedades e transmissão de sinais por sistemas LIT.

Bibliografia Básica

- LATHI, B. P. *Sinais e sistemas lineares*. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- OPPENHEIM, Alan V; WILLSKY, Alan S. *Sinais e sistemas*. 2.ed. São Paulo: Pearson Prentice Hall, 2010. 568p. ISBN: 9788576055044.
- HSU, Hwei. *Sinais e Sistemas*. 2.ed. Porto Alegre: Bookman, 2012. 495p. (Coleção schaum) ISBN: 9788577809387.

- ANTON, Howard; BUSBY, Robert C.. Álgebra linear contemporânea. Porto alegre: Bookman, 2011. 610p. ISBN: 9788536306155.
- ANTON, Howard. Álgebra linear com aplicações. 10.ed. 2012.
- LIPSCHUTZ, Seymour; LIPSON, Marc Lars. *Álgebra linear*. Porto Alegre: Bookman, 2011. (Coleção Schaum) ISBN: 9788577808335.
- ZILL, Dennis G; CULLEN, Michael R. *Equações diferenciais*. São Paulo: Pearson Makron Books, 2001. 473p. ISBN: 9788534612913.
- HAYKIN, S.; VAN VEEN, B. Sinais e sistemas. Porto Alegre: Bookman, 2003. 668p.

Componente	Carga Horária
Sistemas de Controle I	90h

controle. Introdução aos sistemas de Transformada de Laplace. Função transferência. Modelagem de sistemas dinâmicos: elétricos, mecânicos (equilíbrio de corpos rígidos; teorema da superposição; momento de inércia), eletromecânicos, fluídicos (dinâmica dos fluidos: escoamento laminar e turbulento) e térmicos (condução de calor; convecção de calor). Modelos contínuos de sistemas: linearização em torno de um ponto fixo. Resposta dinâmica de sistemas: sistemas de 1ª e 2ª ordem, diagrama de blocos, função de transferência e especificação no domínio do tempo em termos de polos e zeros. Especificações de erro em regime permanente, sistemas com realimentação unitária, constante de erro estático e tipo de sistemas. Estabilidade de sistemas: BIBO, critérios de estabilidade de Routh-Hurwitz, Nyquist, Curvas de Bode e Jury.

Bibliografia Básica

- NISE, Norman S. *Engenharia de sistemas de controle*. Rio de Janeiro: LTC, 2012. 659p. ISBN: 978-85216-2135-5.
- CASTRUCCI, Plínio De Lauro; BITTAR, Anselmo. *Controle automático*. Rio de Janeiro: LTC, 2011. 5476p. ISBN: 9788521617860. 55
- OGATA, Katsuhiko. *Engenharia de controle moderno*. São Paulo: Pearson Prentice Hall, 2010. 800 p. ISBN: 9788576058106.

- DORF, Richard C; BISHOP, Robert H. *Sistemas de controle modernos*. Rio de Janeiro: LTC, 2011. 724p. ISBN: 9788521617143.
- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- OPPENHEIM, Alan V; WILLSKY, Alan S. *Sinais e sistemas*. 2.ed. São Paulo: Pearson Prentice Hall, 2010. 568p. ISBN: 9788576055044.
- IRWIN, J. David; NELMS, R. Mark. *Análise básica de circuitos para engenharia*. Rio de Janeiro: LTC, 2016. 679p. ISBN: 9788521621805.
- HAYT, William H; KEMMERLY, Jack E; DURBIN, Steven M. *Análise de circuitos em engenharia*. São Paulo: McGraw-Hill, 2008. 858p. ISBN: 9788577260218.

Componente	Carga Horária
Sistemas de Controle II	60h

Método do Lugar Geométrico das Raízes (LGR). Ações de controle básicas: controladores em série e por realimentação, ações de controle PID e avanço-atraso. Projeto de controladores pelo método LGR. Aproximação discreta de funções de transferência contínuas. Projeto de sistemas de controle contínuo e digital utilizando o espaço de estados: estabilidade, controlabilidade, observabilidade, realimentação de estados, observadores de estado e seguidores de referência.

Bibliografia Básica

- NISE, Norman S. *Engenharia de sistemas de controle*. Rio de Janeiro: LTC, 2012. 659p. ISBN: 978-85216-2135-5.
- CASTRUCCI, Plínio De Lauro; BITTAR, Anselmo. *Controle automático*. Rio de Janeiro: LTC, 2011. 5476p. ISBN: 9788521617860. 55
- OGATA, Katsuhiko. *Engenharia de controle moderno*. São Paulo: Pearson Prentice Hall, 2010. 800 p. ISBN: 9788576058106.

- DORF, Richard C; BISHOP, Robert H. *Sistemas de controle modernos*. Rio de Janeiro: LTC, 2011. 724p. ISBN: 9788521617143.
- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- OPPENHEIM, Alan V; WILLSKY, Alan S. *Sinais e sistemas*. 2.ed. São Paulo: Pearson Prentice Hall, 2010. 568p. ISBN: 9788576055044.
- IRWIN, J. David; NELMS, R. Mark. *Análise básica de circuitos para engenharia*. Rio de Janeiro: LTC, 2013. 679p. ISBN: 9788521621805.
- HAYT, William H; KEMMERLY, Jack E; DURBIN, Steven M. *Análise de circuitos em engenharia*. São Paulo: McGraw-Hill, 2008. 858p. ISBN: 9788577260218.
- NISE, Norman S. *Engenharia de sistemas de controle*. Rio de Janeiro: LTC, 2002. 659p. ISBN: 8521613016.

Componente	Carga Horária
Sistema de Gestão e Segurança no Trabalho	60h

Noções de saúde ocupacional; agentes causadores de prejuízos à saúde; legislação sobre as condições de trabalho; metodologia para avaliação de condições de trabalho; técnicas de medição dos agentes; programas: PPRA e PCMSO; sistemas de gestão de SST: OHSAS 18.001 e BS 8.800.

Bibliografia Básica

- BARBOSA FILHO, Antônio Nunes. *Segurança do trabalho e gestão ambiental*. 4 ed. São Paulo: Atlas, 2011.
- GONÇALVES, Edwar Abreu. *Manual de segurança e saúde no trabalho*. São Paulo: Ltr, 2006.
- MANUAIS DE LEGISLAÇÃO ATLAS. Segurança e medicina do trabalho. 71. Atlas. 2013.
- MORAES, Giovanni. Elementos do sistema de gestão SMSQRS: segurança, meio ambiente, saúde ocupacional, qualidade e responsabilidade social: sistema de gestão integrada. Rio de Janeiro: GVC, 2010. 602 p.

- BRASIL. Ministério do Trabalho e Emprego. Norma Regulamentadora. Disponível em: http://www.mtps.gov.br/seguranca-e-saude-no-trabalho/normatizacao/normasregulamentadoras
- Análise, avaliação e gerenciamento de riscos. Rio Grande: Fundação para o Desenvolvimento da Ciência, 1990.
- HIGIENE e segurança do trabalho. Rio de Janeiro: Elsevier, 2011.

Componente	Carga Horária
Sistema em Tempo-real	30h

Introdução e conceitos básicos sobre sistemas de tempo-real. Escalonamento de tarefas periódicas e aperiódicas com restrições de tempo-real. Sistemas Operacionais de tempo-real. Métricas de desempenho e protocolos voltados a comunicação entre aplicações de tempo-real.

Bibliografia Básica

- SHAW, A. C. Sistemas e Software de tempo-real. Porto Alegre: Bookman, 2003. 240p;
- TANENBAUM, A. S. *Sistemas Operacionais Modernos*. 3a ed. São Paulo: Prentice Hall, 2010. 672p.
- KUROSE, J. F. ROSS, K. W. Redes de computadores e a Internet: uma abordagem top-down. 5a ed. São Paulo: Pearson, 2010. 640p.

- STALLINGS, W. *Arquitetura e organização de computadores*. 8a ed. Rio de Janeiro: Prentice Hall, 2010. 640p;
- DEITEL, H.; DEITEL, P.; STEINBUHLER, K. *Sistemas operacionais*. 3a ed. São Paulo: Prentice Hall, 2005. 784p;
- MACHADO, F. B.; MAIA, L. P. *Arquitetura de sistemas operacionais*. 5a ed. Rio de Janeiro: LTC, 2013. 266p.
- FOROUZAN, B. A. *Comunicação de dados e redes sem-fio*. 4a ed. Rio de Janeiro: McGraw-Hill, 2008. 1134p;
- ALBUQUERQUE, E. Q. *QoS Qualidade em serviços de redes de computadores*. Rio de Janeiro: Campus, 2013. 160p;

Componente	Carga Horária
Sistemas de Transmissão de Dados	60h

Introdução aos sistemas de comunicação. Modulação por portadoras senoidais: amplitude, fase e freqüência. Multiplexação por divisão na freqüência. Teorema da amostragem. Modulação por portadoras pulsadas: PAM, PPM, PWM e PCM. Multiplexação por divisão no tempo. Princípios de transmissão de dados digitais: codificação de linha, formatação de pulso, filtro casado e sistemas digitais com portadoras.

Bibliografia Básica

- LATHI, B. P; DING, Zhi. *Sistemas de comunicações analógicos e digitais modernos*. Rio de Janeiro: LTC, 2012. 838p. ISBN: 9788521620273.
- HAYKIN, Simon; MOHER, Michael. *Sistemas de comunicação*. 5.ed. Porto Alegre: Bookman, 2011. 512p. ISBN: 9788577807253.
- OPPENHEIM, Alan V; WILLSKY, Alan S. *Sinais e sistemas*. 2.ed. São Paulo: Pearson Prentice Hall, 2010. 568p. ISBN: 9788576055044.

- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- PROAKIS, John G; MANOLAKIS, Dimitris G.. *Digital signal processing*. 4.ed. New Jersey: Prentice Hall, 2007. 1084p. ISBN: 0131873741.
- DINIZ, Paulo S. R; SILVA, Eduardo A. B. Da; NETTO, Sergio L.. *Processamento digital de sinais:* projeto e análise de sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976p. ISBN: 9788582601235.
- HSU, Hwei. *Sinais e Sistemas*. 2.ed. Porto Alegre: Bookman, 2012. 495p. (Coleção schaum) ISBN: 9788577809387.
- HAYKIN, Simon; MOHER, Michael. *Sistemas modernos de comunicações wireless*. Porto Alegre: Bookman, 2009. ISBN: 9788577801558.

Componente	Carga Horária
Sistemas Digitais Embarcados	60h

Linguagem de descrição de hardware: elementos, estrutura e implementação de circuitos combinacionais e sequenciais. Microprocessadores: projeto e implementação em hardware reconfigurável. Microcontroladores: elementos, arquiteturas, projeto e implementação de sistemas embarcados.

Bibliografia Básica

- VAHID, Frank. *Sistemas digitais:* projeto, otimização e HDLs. Porto Alegre: Artmed, 2008. 560p. ISBN: 9788577801909.
- PEDRONI, Volnei. *Eletrônica digital moderna e VHDL=Digital eletronics and design with VHDL*. Rio de Janeiro: Elsevier, 2010. 619p. ISBN: 9788535234657.
- D'AMORE, Roberto. *VHDL:* descrição e síntese de circuitos digitais. Rio de Janeiro: LTC, 2012. 292 p. ISBN: 8521620549.

- IDOETA, Ivan Valeije. *Elementos de eletrônica digital*. 41.ed. São Paulo: Érica, 2012. 544p. ISBN: 9788571940192.
- TANENBAUM, Andrew S. *Organização estruturada de computadores*. 6.ed. São Paulo: Pearson, 2013. 605p. ISBN: 9788581435398.
- STALLINGS, William. *Arquitetura e organização de computadores*. 8.ed. São Paulo: Pearson, 2010. 624 p. ISBN: 9788576055648.
- HENNESSY, John L; PATTERSON, David A.. *Arquitetura de computadores:* uma abordagem quantitativa. 5.ed. Rio de Janeiro: Elsevier, 2014. 501p. ISBN: 9788535261226.
- NULL, Linda; LOBUR, Julia. *Princípios básicos de arquitetura e organização de computadores*. 2. ed. Porto Alegre: Bookman, 2010. 821p. ISBN: 9788577807376.

Componente	Carga Horária
Sistemas Distribuídos	60h

Introdução aos Sistemas Distribuídos: definição, metas e tipos. Arquiteturas de Sistemas Distribuídos. Processos. Comunicação. Nomeação. Sincronização. Consistência e replicação. Tolerância a falhas. Segurança.

Bibliografia Básica

- COLOURIS, G.; DOLLIMORE, K. KINDBERG, T. *Sistemas Distribuídos:* conceitos e projeto. 5ª ed. Porto Alegre: Bookman, 2013. 1064p.
- TANENBAUM, A. S.; STEEN, M. V. *Sistemas Distribuídos:* princípios e paradigmas. 2ª ed. São Paulo: Pearson, 2008. 416p.
- FOROUZAN, B. A. *Comunicação de dados e redes de computadores*. 4ª ed. Rio de Janeiro: McGraw-Hill, 2008. 1134p.

- TANENBAUM, A. S.; Sistemas Operacionais Modernos. 3ª ed. São Paulo: Prentice-Hall, 2010. 672p.
- DEITEL, H.; DEITEL, P.; STEINBUHLER, K. Sistemas operacionais. 3ª ed. São Paulo: Prentice Hall, 2005. 784p.
- KUROSE, J. F.; ROSS K W. *Redes de Computadores e a Internet:* uma abordagem top-down. 5ª ed. São Paulo: Pearson, 2010. 640p.
- TANENBAUM, A. S; WETHERALL, D. *Redes de Computadores*. 5ª ed. São Paulo: Pearson, 2011. 600p.
- COMER, D. E. *Redes de Computadores e Internet*: abrange transmissão de dados, ligações inter-redes, web e aplicações. 4ª ed. Porto Alegre: Bookman, 2009. 720p.

Componente	Carga Horária
Sistemas Inteligentes	60h

Introdução e histórico da inteligência artificial. Sistemas inteligentes: arquitetura, representação do conhecimento, inferência e ciclo de vida de desenvolvimento. Resolução de problemas por meio de busca: estratégias de busca sem informação e heurísticas. Sistemas baseados em conhecimento: sistemas especialistas e sistemas fuzzy. Aprendizado de máquina: paradigma, simbólico, conexionista e evolucionista. Suporte a implementação. Integração de paradigmas.

Bibliografia Básica

- RUSSELL, Stuart Jonathan; NORVIG, Peter. *Inteligência artificial*. 2. ed. Rio de Janeiro: Elsevier, 2004. 1021 p. ISBN: 9788535211771.
- HAYKIN, Simon. *Redes Neurais:* princípios e práticas. 2.ed. Porto Alegre: Artmed, 2001. 900p. ISBN: 9788573077186.
- GOLDBARG, Marco Cesar. *Otimização combinatória e programação linear:* modelos e algoritmos. 2.ed. Rio de Janeiro: Elsevier, 2005. 518p. ISBN: 8535215204.

- ANTON, Howard; BUSBY, Robert C. Álgebra linear conteporânea. Porto alegre: Bookman, 2011. 610p. ISBN: 9788536306155.
- GUIMARÃES, Ângelo De Moura. *Algoritmos e estruturas de dados*. Rio de Janeiro: LTC, 2014. 216p. ISBN: 9788521603788.
- COPPIN, Ben. *Inteligência Artificial*. Rio de Janeiro: LTC, 2010. 664p. ISBN: 9788521617297.
- SILVA, Ivan Nunes; SPATTI, Danilo Hernane; FLAUZINO, Rogério Andrade. *Redes Neurais Artificiais Para Engenharia E Ciências Aplicadas. Curso Prático*. São Paulo: Artliber, 2016. 862p. ISBN: 9788588098879.
- BRAGA, Antônio de Pádua; CARVALHO, André Ponce de Leon F.; LUDERMIR, Teresa Bernarda. *Redes Neurais Artificiais*: Teoria e Aplicações. Rio de Janeiro: LTC, 2007. 248p. ISBN: 9788521615644.

Componente	Carga Horária
Sistemas Operacionais	60h

Introdução aos Sistemas Operacionais: histórico e conceitos básicos. Processos e *Threads*: definição, algoritmos de escalonamento, comunicação entre processos e seus problemas clássicos. Gerenciamento de memória: abstrações e memória virtual (definição e técnicas). Sistemas de arquivos: arquivos, diretórios e questões relacionadas à implementação. Entrada e saída: hardware, software e dispositivos existentes. Impasses: definição e técnicas para a resolução.

Bibliografia Básica

- TANENBAUM, A. S. Sistemas operacionais modernos. 3ª ed. São Paulo: Prentice Hall, 2010. 672p;
- DEITEL, H.; DEITEL, P.; STEINBUHLER, K. *Sistemas operacionais*. 3^a ed. São Paulo: Prentice Hall, 2005. 784p;
- MACHADO, F. B.; MAIA, L. P. *Arquitetura de sistemas operacionais*. 5ª ed. Rio de Janeiro: LTC, 2013. 266p.

- OLIVEIRA, R. S.; CARISSIMI, A. S.; TOSCANI, S. S. Sistemas Operacionais Vol. 11. 4ª ed. Porto Alegre: Bookman, 2010. 375p (Série livros didáticos inforática UFRGS);
- SIEVER, E. WEBER, A. FIGGINS, S. LOVE, R. ROBBINS, A. *Linux*: O guia essencial. 5^a ed. Porto Alegre: Bookman, 2006. 856p;
- TANENBAUM, A. S. *Organização estruturada de computadores*. 6ª ed. Rio de Janeiro: Prentice Hall, 2013. 624p;
- STALLINGS, W. Arquitetura e organização de computadores. 8ª ed. Rio de Janeiro: Prentice Hall, 2010. 640p;
- HENNESSY, J. L; PATTERSON, D. A. Arquitetura de computadores: uma abordagem quantitativa. 5ª ed. Rio de Janeiro: Campus, 2013. 744p.

Componente	Carga Horária
Sociologia	60h

Fundamentos das Ciências Sociais. Trabalho, forças produtivas e relações de produção. Desenvolvimento. Cultura. Ideologia. Cidadania. Desigualdades e relações de poder. Questões Étnicas Raciais. Teoria Social Contemporânea.

Bibliografia Básica

- ARON, R. *As etapas do pensamento sociológico*. 7ª ed. Brasília/São Paulo: EdUNB/Martins Fontes, 2008.
- DURKHEIM, E. As regras do método sociológico.5ª ed. São Paulo: Nacional, 2012.
- GIDDENS, A. Capitalismo e moderna teoria social. 5 ed. Lisboa: Presença, 2000.

- MARX, K. O 18 Brumário. 1ª ed. Rio de Janeiro: Paz e Terra, 1978.
- BOTTOMORE, T. B. *Introdução à Sociologia*. 9^a ed. Rio de Janeiro: Zahar, 2013.
- CASTRO, A. M. e DIAS, E. *Introdução ao pensamento sociológico* Sociologia (Durkheim, Weber, Marx e Parsons). 1ª ed. Rio de Janeiro: Eldorado, 1983.
- COMTE, A. *Dinâmica Social*, In: Morais Filho, E. Comte Sociologia.1ª ed. São Paulo: 1983, Ática. P. 134-159.
- COMTE, A. *Estática social*, In morais Filho, E.: Comte Sociologia. 1ª ed. São Paulo: Ática, 1983. P. 105-132.

Componente	Carga Horária
Teoria da Computação	60h

Linguagens, Autômatos Finitos Determinísticos e Não-Determinísticos, Expressões Regulares, Gramáticas Regulares, Propriedades das Linguagens Regulares, Gramáticas Livres de Contexto, Autômatos com Pilha, Propriedades das Linguagens Livres de Contexto, Gramáticas irrestritas, Gramáticas sensíveis ao contexto, Hierarquia de Chomsky, Máquinas de Turing como reconhecedoras de linguagens e como tradutores. Noções de Computabilidade e Decidibilidade.

Bibliografia Básica

- BEDREGAL, B. R. C.; ACIÓLY, B. M.; LYRA. A. Introdução à Teoria da Computação: Linguagens Formais, Autômatos e Computabilidade. Natal-RN: Edunp, 2010;
- HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J. D. Introdução à teoria de autômatos, linguagens e computação. 2a ed. Rio de Janeiro: Campus, 2002. 584p;
- BLAUTH, P. M. Linguagens formais e autômatos. 6a ed. Porto Alegre: Bookman, 2010. 256p (Série livros didáticos informática UFRGS).

- SIPSER, M.; QUEIROZ, R. J. G. B. Introdução à teoria da computação. 2a ed. São Paulo: Thomson, 2007;
- DIVERIO, T. A.; MENEZES, P. B. Teoria da computação: máquinas universais e computabilidade Vol. 5. 3a ed. Porto Alegre: Bookman, 2011. 288p. (Série livros didáticos informática UFRGS);
- LEWIS, H. R.; PAPADIMITRIOU, C. H. Elementos da teoria da computação. 2a ed. Porto Alegre: Bookman, 2004. 344p;
- RAMOS, M. V. M.; NETO, J. J.; VEGA, Í. S. Linguagens formais: Teoria, modelagem e implementação. São Paulo-SP: Bookman, 2009.
 - VIEIRA, N. J. *Introdução aos fundamentos da Computação*. São Paulo-SP: Pioneira Thomson Learning, 2006.

4.1 Ementa dos Componentes Curriculares Optativos

Componente	Carga Horária
Acionamentos para Controle e Automação	60h

Ementa

Fundamentos de conversão eletromecânica de energia: princípios de funcionamento, características, noções de especificação e máquinas elétricas (motor de corrente contínua, motor de indução e motor síncrono). Princípios de funcionamento dos conversores estáticos (retificadores, pulsadores e inversores): métodos de comando e noções de especificação. Princípios gerais de variadores de velocidade e de posição: estruturas, modelos, redutores comportamento estático/dinâmico e desempenho.

Bibliografia Básica

- Umans, Stephen D. *Máquinas elétricas de Fitzerald e Kingsley*. 7ª ed. Porto Alegre: McGraw-Hill, 2014. 728p;
- HART, D. W. *Eletrônica de potência*: análise e projeto de circuitos. Rio de Janeiro: McGraw-Hill, 2012. 504p;
- CHAPMAN, S. J. Fundamentos de máquinas elétricas. 5ª ed. Rio de Janeiro: McGraw-Hill, 2013. 700p.

- HALLIDAY, D.; RESNICK, R.; KRANE, K. S.; STANLEY, P. E. *Física* Vol. 3. 5^a ed. Rio de Janeiro: LTC, 2004. 390p;
- BOYLESTAD, R. L.; NASHELSKY, L. *Dispositivos eletrônicos e teoria de circuitos*. 12ª ed. São Paulo: Prentice-Hall, 2013. 784p;
- SEDRA, A. S.; SIMTH, K. C. Microeletrônica. 5ª ed. São Paulo: Pearson, 2007. 864p;
- OGATA, K. *Engenharia de controle moderno*. 5ª ed. São Paulo: Prentice-Hall, 2011. 824p;
- DORF, R. C.; BISHOP, R. H. *Sistemas de controle modernos*. 12^a ed. Rio de Janeiro: LTC, 2013. 838p.

Componente	Carga Horária
Análise de Projeto de Sistemas Orientados a Objetos	60h

Componentes de um sistema orientado a objetos. Ferramentas de modelagem orientada a objetos. Metodologias para análise e desenvolvimento de sistemas orientados a objetos. Estudo de casos utilizando as metodologias apresentadas.

Bibliografia Básica

- BEZERRA, E. *Princípios de análise de sistemas com UML*. 2ª ed. Rio de Janeiro: Campus, 2006. 392p.
- LARMAN, C. *Utilizando UML e padrões*. 3ª ed. Porto Alegre: Bookman, 2007. 696p.
- GUEDES, GILLEANES T. A. *UML 2* Uma abordagem prática. 2ª ed. São Paulo: Novatec, 2011.488p.

- SOMMERVILLE, I. Engenharia de software. 9ª ed. São Paulo: Pearson, 2011. 544p.
- PRESSMAN, R. *Engenharia de software*: uma abordagem profissional. 7ª ed. Rio de Janeiro: McGraw-Hill, 2011. 780p.
- PAULA FILHO, W. P. *Engenharia de software*: fundamentos, métodos e padrões. 3ª ed. Rio de Janeiro: LTC, 2009. 1358p.
- PFLEEGER, S. L. *Engenharia de software*: teoria e prática. 2ª ed. São Paulo: Makron Books, 2004.
- BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. *UML*: guia do usuário. 2ª ed. Rio de Janeiro: Campus, 2006. 552p.

Componente	Carga Horária
Compiladores	60h

Linguagens e tradutores. Compiladores e interpretadores. Estrutura dos compiladores. Análise léxica e sintática. Representação intermediária. Análise semântica. Geração e otimização de código.

Bibliografia Básica

- AHO, A. V.; LAM, M. S.; SETHI, R.; ULLMAN, D. *Compiladores*: princípios, técnicas e ferramentas. 2ª ed. Rio de Janeiro: Prentice-Hall, 2008. 648p;
- LOUDEN, K. C. Compiladores: princípios e prática. Cencage Learning, 2004;
- BROWN, D.; LEVINE, J.; MASON, T. Lex & Yacc. O'Reilly, 1992. 388p.

- PRICE, A. M. A.; TOSCANI, S. S. *Implementação de linguagens de programação*: compiladores Vol 9. 3ª ed. Porto Alegre: Bookman, 2008. 195p. (Série de livros didáticos UFRGS);
- HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J. D. *Introdução à teoria de autômatos, linguagens e computação*. 2ª ed. Rio de Janeiro: Campus, 2002. 584p;
- SIPSER, M.; QUEIROZ, R. J. G. B. *Introdução à teoria da computação*. 2ª ed. São Paulo: Thomson, 2007;
- BLAUTH, P. M. *Linguagens formais e autômatos*. 6ª ed. Porto Alegre: Bookman, 2010. 256p (Série livros didáticos informática UFRGS);
- DIVERIO, T. A.; MENEZES, P. B. *Teoria da computação*: máquinas universais e computabilidade Vol. 5. 3ª ed. Porto Alegre: Bookman, 2011. 288p. (Série livros didáticos informática UFRGS).

Componente	Carga Horária
Computação e Programação Paralela	60h

Conceitos básicos: computadores e computação paralela. Projeto de algoritmos paralelos: particionamento, comunicação, aglomeração e mapeamento. Análise de desempenho: definições, modelagem e análise. Ambientes de processamento distribuído: noções de programação concorrente, redes de estações, protocolos leves de comunicação, *Parrallel Virtual Machine* (PVM) e *Message Passing Interface* (MPI).

Bibliografia Básica

- TANENBAUM, A. S. Sistemas operacionais modernos. 3ª ed. São Paulo: Prentice Hall, 2010. 672p.
- FOROUZAN, B. A. *Comunicação de dados e redes de computadores*. 4ª ed. Rio de Janeiro: McGraw-Hill, 2008. 1134p.
- TANENBAUM, A. S.; STEEN, M. V. *Sistemas Distribuídos:* princípios e paradigmas. 2ª ed. São Paulo: Pearson, 2008. 416p.

- TANENBAUM, A. S. *Organização estruturada de computadores*. 6ª ed. Rio de Janeiro: Prentice-Hall, 2013. 624p.
- DEITEL, H.; DEITEL, P.; STEINBUHLER, K. *Sistemas operacionais*. 3ª ed. São Paulo: Prentice Hall, 2005. 784p.
- KUROSE, J. F.; ROSS K W. *Redes de Computadores e a Internet:* uma abordagem top-down. 5ª ed. São Paulo: Pearson, 2010. 640p.
- TANENBAUM, A. S; WETHERALL, D. *Redes de Computadores*. 5ª ed. São Paulo: Pearson, 2011. 600p.
- COLOURIS, G.; DOLLIMORE, K. KINDBERG, T. *Sistemas Distribuídos:* conceitos e projeto. 5ª ed. Porto Alegre: Bookman, 2013. 1064p.

Componente	Carga Horária
Computação Gráfica	60h

Transformações geométricas em 2D e 3D: matrizes de transformação e coordenadas homogêneas. Transformação entre sistemas de coordenadas 2D e recorte. Transformações de projeção paralela e perspectiva. Câmera virtual. Transformação entre sistemas de coordenadas 3D. Definição de objetos e cenas tridimensionais: modelos poliedrais e malhas de polígonos. O processo de renderização: fontes de luz, remoção de linhas e superfícies ocultas, modelos de tonalização (*shading*). Aplicação de texturas. O problema do serrilhado (*aliasing*) e técnicas de anti-serrilhado (*antialiasing*).

Bibliografia Básica

- AZEVEDO, E.; CONCI, A. *Computação gráfica Volume 1*: processamento e análise de imagens digitais. Rio de Janeiro: Campus, 2003. 384p;
- CONCI, A.; AZEVEDO, E.; LETA, F. R. *Computação gráfica Volume 2*: Teoria e prática. Rio de Janeiro: Campus, 2007. 432p;
- COHEN, M.; MANSSOUR, I. H. *OpenGL*: uma abordagem prática e objetiva. Novatec, 2006. 486p.

- HUGHES, J. F.; VAN DAM, A.; MCGUIRE, M.; SKLAR, D. F.; FOLEY, J. D.; FEINER, S. K.; AKELEY, K. *Computer graphics*: principles and pratice. 3^a ed. Addison-Wesley, 2013. 1264p;
- HEARN, D. D.; BAKER, M. P.; CARITHERS, W. Computer graphics with OpenGL. 4^a ed. Prentice-Hall, 2011. 888p;
- ZHANG, H.; LIANG, D. Computer graphics using Java 2d and 3d. Prentice-Hall, 2006. 2007;
- SHREINER, D.; SELLERS, G.; KESSENICH, J. M.; LICEA-KANE, B. M. *OpenGL* programming guide: the official guide to learning OpenGL version 4.3. 8^a ed. Addison-Wesley, 2010. 984p;
- ANTON, H.; BUSBY, R. C. *Álgebra linear contemporânea*. Porto Alegre: Bookman, 2006. 612p.

Componente	Carga Horária
Comunicações Sem-Fio	60h

Sistemas rádio móvel. Arquitetura de múltiplo acesso. Sistema celular. Propagação em sistemas móveis. Efeitos de multipercurso. Diversidade/Combinação. Sistemas AMPS, TDMA, CDMA, GSM, WCDMA. Características funcionais, equipamentos utilizados, aspectos de cobertura, planejamento, efeitos da mobilidade, qualidade de transmissão, eficiência espectral e reuso de frequências. Noções de projeto de sistemas celulares. Sistemas WLL e regulamentação brasileira sobre comunicação sem-fio. Comunicações móveis via satélite.

Bibliografia Básica

- RAPPAPORT, T. S. *Comunicações sem fio:* princípios e práticas. 2ª ed. Pearson Prentice Hall, 2009. 412p;
- HAYKIN, Simon; MOHER, Michael. *Sistemas modernos de comunicações wireless*. Porto Alegre: Bookman, 2009. ISBN: 9788577801558.
- LATHI B. P.; DING Z. Sistemas de comunicações analógicos e digitais modernos. 4ª ed. Rio de Janeiro: LTC, 2012. 862p;

- GARG, V.; WILKES, J. E. Wireless and Personal Communications Systems (PCS): fundamentals and applications. Prentice-Hall, 1996. 464p;
- HAYKIN, S. Sistemas de comunicação. 4ª ed. Porto Alegre: Bookman, 2004;
- PROAKIS, J. G.; SALEHI, M. Fundamentals of communication systems. 2^a ed. Prentice-Hall, 2013;
- MOLISCH, A. F. Wireless communications. 2^a ed. Nova Jersey, EUA: John Wiley & Sons, 2010. 884p.
- LATHI, B. P. *Sinais e sistemas lineares*. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.

Componente	Carga Horária
Desenvolvimento de Aplicações para Dispositivos Móveis	60h
<u> </u>	

Desafios da computação móvel. Plataformas de desenvolvimento. Ciclo de vida de uma aplicação. Layouts. Componentes de interface gráfica. Eventos. Persistência de dados. Sensores. Mapas. Conteúdos Web. Comunicação com Server (síncrona e assíncrona). Recursos Multimídia. Animações. Distribuição de uma aplicação.

Bibliografia Básica

- LECHETA, Ricardo. Google Android, 5ª edição, Novatec, 2015.
- DEITEL, Harvey M.; DEITEL, Abbey; MORGANO, Michael. Android para programadores: uma abordagem baseada em aplicativos. Bookman, 2013.
- GLAUBER, Nelson. Dominando o Android, 2ª edição, Novatec, 2015.

- DAMIANI, Edgard B. Programação de Jogos Android, 2ª edição, Novatec Editora, 2016.
- MONK, Simon. Projetos com Arduíno e Android. Bookman. 2014.
- LECHETA, Ricardo. Web Services RESTful. Novatec, 2015.
- GAMMA, Erich, HELM, Richard, JOHNSON, Ralph, VLISSIDES, John. Padrões de Projeto. Soluções Reutilizáveis de Software Orientado a Objetos. Bookman, 2000.
- SILVA, Maurício Samy. JQuery: a biblioteca do programador JavaScript. São Paulo. Novatec. 2008.

Componente	Carga Horária
Desenvolvimento de Software Embarcado	60h

Definição de *software* embarcado e sistemas embarcados. Linguagens de programação para sistemas embarcados. Introdução a microcontroladores e processadores reprogramáveis. Arquiteturas dos microcontroladores e processadores reprogramáveis. Temporização e aplicações de tempo real. Interface com periféricos. Desenvolvimento de projeto de sistema embarcado. Ambientes de desenvolvimento embarcado.

Bibliografia Básica

- SIMON, M. Programação com Arduino Começando com Sketches. Bookman, 2017.
- TAURION, C. Software embarcado. A nova onda da informática chips e software em todos os objetos. 1. Ed. Editora Brasport. 2005.
- COSTA, C. Projeto de circuitos digitais com FPGA. São Paulo: Érica, 2009. 206 p. ISBN 978-85-365-0239-7.

- GANSSLE, J. The art of designing embedded systems. Burlington, MA: Elsevier, 2008. 298 p. ISBN 978-0-7506-8644-0.
- WILMSHURST, T. Designing embedded systems with PIC microcontrollers: principles and applications. 2.ed. Inglaterra: newnes, 2010. 661 p. ISBN 978-1-85617-750-4.
- LEE, I.; LEUNG, J. Y-T; SON, S. H. Handbook of real-time and embedded systems. [s.l.]: [s.n.], 2007. [p. irr.]. ISBN 978-1-584-88678-5.
- ZANCO, W. S. Microcontroladores PIC: técnicas de software e hardware para projetos de circuitos eletrônicos com base no PIC 16F877A. 2 ed. São Paulo SP: Érica, 2008. 390 p p. ISBN 978-85-365-0103-1
- PECKOL, J. K.. Embedded systems: a contemporary design tool. Hoboken, N.J.: John Willey & Sons, 2008. 810 p. ISBN 978-0-471-72180-2.

Componente	Carga Horária
Fenômenos de Transporte	60h

Estática dos fluidos. Dinâmica dos fluidos não viscosos. Viscosidade e resistência. Escoamento não-viscoso incompressível. Escoamento viscoso incompressível. Medida e controle de fluidos. Condução de calor. Convecção de calor. Radiação. Difusão e convecção de massa.

Bibliografia Básica

- BIRD, R. B.; STEWARD, W. E. & LIGHTFOOT, E. N. Fenômenos de Transporte. 2^a ed.,Rio de Janeiro: LTC Livros Técnicos e Científicos Editora S.A., 2011.
- INCROPERA, P.F.; de WITT, D. P. Fundamentos de transferência de calor e massa. 6.ed. Rio de Janeiro: LTC, 2012.
- ROMA, W. N. L. Fenômenos de Transporte para Engenharia. 2a. Edição. São Carlos:Rima Editora, 2006.

- FOX, R.W. & McDONALD, A.T. Introdução à Mecânica dos Fluidos, editora LTC, 2000.
- MUNSON, B. R.; YOUNG, D. F.; OKIISHI, T. H. Fundamentos da Mecânica dos Fluidos. São Paulo: Edgard Blücher, 2004
- BRAGA, W. Transmissão de Calor, Ed. Thomson, 2004.
- MORAN; SHAPIRO; MUNSON; DEWITT Engenharia de Sistemas Térmicos. Termodinâmica, Mecânica de Fluidos e Transferência de Calor. 6ª ed. Rio de Janeiro: LTC, 2012.
- SISSON, LEIGHTON E; PITTS, D.R.; Fenômenos de Transporte.1^a ed. Guanabara Dois, 1978, RJ.

Componente	Carga Horária
Gerência de Redes	60h

Introdução à gerência de redes. Padrões: SNMPv1, SNMPv2c, SNMPv3. Abordagens evolucionárias e revolucionárias. Introdução à gerência em redes ópticas. Arquitetura ASON. Padrão GMPLS. Tópicos avançados.

Bibliografia Básica

- KUROSE, J. F.; ROSS K W. *Redes de Computadores e a Internet:* uma abordagem top-down. 5ª ed. São Paulo: Pearson, 2010. 240p.
- FOROUZAN, B. A. *Comunicação de dados e redes de computadores*. 4ª ed. Rio de Janeiro: McGraw-Hill, 2008. 1134p.
- COMER, D. E. *Redes de Computadores e Internet:* abrange transmissão de dados, ligações inter-redes, web e aplicações. 4ª ed. Porto Alegre: Bookman, 2009. 720p.

- STALLINGS, W. *Arquitetura e organização de computadores*. 8ª ed. Rio de Janeiro: Prentice Hall, 2010. 640p.
- TANENBAUM, A. S; WETHERALL, D. *Redes de Computadores*. 5ª ed. São Paulo: Pearson, 2011. 600p.
- ALBUQUERQUE, E. Q. QoS *Qualidade de Serviços em Redes de Computadores*. Rio de Janeiro: Campus, 2003. 264p.
- PINHEIRO, M. S. *Guia completo de cabeamento de redes*. 2.ed. Rio de Janeiro: Elsevier, 2015. 312p.
- TANENBAUM, A. S.; STEEN, M. V. *Sistemas Distribuídos:* princípios e paradigmas. 2ª ed. São Paulo: Pearson, 2008. 416p.

Componente	Carga Horária
Introdução à Robótica	60h

Representação matemática de posição e orientação. Modelagem cinemática de robôs. Cinemática diferencial e estática. Modelagem de obstáculos e planejamento de caminhos. Geração de trajetórias e controle cinemático de robôs.

Bibliografia Básica

- SAEED B. NIKU. Introdução a Robótica Análise, Controle e Aplicações. 2 ed. 2013;
- MAJA J. MATRIC. *Introdução À Robótica*. Blucher;
- JOHN J. CRAIG. Robótica. Bookman. 3ª ed. Pearson 2013.

- LATHI, B. P. *Sinais e sistemas lineares*. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- ANTON, H.; BUSBY, R. C. Álgebra linear contemporânea. Porto Alegre: Bookman, 2006. 612p;
- SPIEGEL, M. R.; MOYER, R. E. *Álgebra*. 2ª ed. Porto Alegre: Bookman, 2004. 392p. (Coleção Schaum);
- LIPSCHUTZ, S.; LIPSON, M. *Álgebra Linear*. 4ª ed. Porto Alegre: Bookman, 2011. 434p. (Coleção Schaum);
- ZILL, D. G.; CULLEN, M. K. *Equações diferenciais* Vol. 1. 3ª ed. São Paulo: Makron Books, 2000.

Componente	Carga Horária
Libras	30h

Aspectos linguísticos da Língua Brasileira de Sinais (LIBRAS). História das comunidades surdas, da cultura e das identidades surdas. Ensino básico da LIBRAS. Políticas linguísticas e educacionais para surdos.

Bibliografia Básica

- FELIPE, Tanya; MONTEIRO, Myr na. *LIBRAS em Contexto*: Curso Básico: Livro do Professor. 7. ed. Brasília: MEC/SEESP, 2007.
- PIMENTA, Nelson. *Coleção Aprendendo LSB*. Rio de Janeiro: Regional Básico, 2000. V.1.
- _____. *Coleção Aprendendo LSB*. Rio de Janeiro: Regional, 2000. V.2 Intermediário.
- _____. *Coleção Aprendendo LSB*. Rio de Janeiro: Regional, 2001. V. 3 Avançado.
- _____. *Coleção Aprendendo LSB*. Rio de Janeiro: Regional, 2004. V. 4 Complementação.

- FERNANDES, Eulália (Org.). Surdez e Bilingüismo. Porto Alegre: Mediação, 2005.
- MOURA, Maria Cecília de. *O surdo, caminhos para uma nova Identidade*. Rio de Janeiro: Revinter, 2000.
- LACERDA, Cristina B.F. de; GÓES, Maria Cecília R. de (Orgs.). *Surdez*: processos educativos e subjetividade. São Paulo: Lovise, 2000.
- QUADROS, Ronice Muller; KARNOPP, Lodenir. *Língua de Sinais Brasileira*: Estudos Lingüísticos. Porto Alegre: Editor a Artmed, 2004.
- THOMA, Adriana; LOPES, Maura (Orgs). *A invenção da surdez*: cultura, alteridade, identidades e diferença no campo da educação. Santa Cruz do Sul: EDUNISC, 2004.

Componente	Carga Horária
Lógica Matemática	60h

Lógica Clássica Proposicional: sintaxe (alfabeto, conjunto de fórmulas, fórmula atômica, sequência de formação de fórmula, complexidade de fórmula, sub-fórmula, árvore sintática associada a fórmula), sistema dedutivo de dedução natural (relação de consequência associada à dedução natural, meta-propriedades da relação de consequência associada à dedução natural), sistema dedutivo de tableaux analíticos, e semântica (valoração, fórmulas possíveis, contraditórias e válidas, relação de consequência semântica, meta-propriedades da relação de consequência semântica, conjuntos de conectivos funcionalmente completos e formas normais conjuntiva e disjuntiva).

Lógica Clássica de Primeira Ordem: sintaxe (assinatura, alfabeto, conjunto dos termos, conjunto de fórmulas, fórmula atômica, sub-fórmula, variáveis em termo, termo fechado, variáveis livres e ligadas em fórmula, fórmula fechada e fórmula aberta, fecho universal de fórmula, substituição em termo e em fórmula, termo livre para variável numa fórmula), sistemas dedutivos de dedução natural e tableaux analíticos, e semântica (interpretação de termo, satisfação de fórmula, fórmulas possíveis, contraditórias e válidas e relação de consequência semântica).

Bibliografia Básica

- ALENCAR FILHO, E. Iniciação à lógica matemática. São Paulo: Nobel, 2011;
- DA SILVA, F.S.C.; FINGER, M.; DE MELO, A.C.V. Lógica para Computação. 2ª ed. São Paulo: Cengage Learning, 2017;
- DALEN, D. V. Lógica e Estrutura. Inglaterra: College Publications, 2017;

- DE SOUZA, J.N. Lógica para ciência da computação e áreas afins. Uma introdução concisa sobre os fundamentos da Lógica. 3ª ed. Rio de Janeiro: Elsevier, 2015;
- FAJARDO, R.A.S. Lógica Matemática. São Paulo: Edusp, 2017;
- SMULLYAN, R.M. Lógica de Primeira Ordem. São Paulo: Editora unesp, 2009;
- ENDERTON, H.B. A Mathematical Introduction to Logic. 2ed. revisada. San Diego: Elsevier, 2001;
- BURRIS, S.N. *Logic for Mathematics and Computer Science*. Upper Saddle River: Prentice Hall, 1998.

Componente	Carga Horária
Mecânica Geral I	60h

Estática da partícula e de corpos rígidos em duas e três dimensões. Equilíbrio e sistemas de forças em duas e três dimensões. Carregamento distribuído. Análise de estruturas: treliças. Cabos. Atrito. Propriedades geométricas: centróide, centro de massa, momento de inércia.

Bibliografia Básica

- JOHNSTON JR., E.R.; BEER, F.P. Mecânica vetorial para engenheiros Estática. 5a ed. São Paulo: Makron, 1994, 793p.
- HIBBELER, R.C. Estática Mecânica para engenharia. 10a ed. São Paulo: Pearson Prentice Hall, 2008, 560p.
- MERIAM, J.L; KRAIGE, L.G. Mecânica Estática. 5a ed. São Paulo: Livros Técnicos e Científicos Editora, 2004, 368p.

- BEER, F. P. e Johnston, R. E. Mecânica Vetorial para Engenheiros.9^a edição. São Paulo: Ed. Makron Books. 2012—
- NÓBREGA, J. C. Mecânica Geral, Volume: Estática. São Paulo. FEI-SBC. 1980
- FRANÇA, L.N.F. e MATSUMURA, A.Z. Mecânica Geral, Vol. Estática. Ed. Edgar Blücher Ltda. 3ª edição. S.P. 2011
- CETLIN, P. R. & HELMANN, H. Fundamentos de Conformação Mecânica dos Metais. 2ª ed.Rio de Janeiro: Guanabara Dois.

Componente	Carga Horária
Multimídia	60h

Autoria e plataformas para multimídia. Ferramentas de desenvolvimento. Áudio e as propriedades físicas do som. Representação digital, processamento e síntese de som. Imagens: representação digital, dispositivos gráficos e processamento. Desenhos e a representação de figuras. Vídeo: interfaces e processamento. Animação.

Bibliografia Básica

- STEINMETZ, R.; NAHRSTEDT, K. *Multimedia fundamentals* Volume 1: media coding and content processing. 2ª ed. Prentice Hall, 2002.
- EFFELSBERG, W.; STEINMETZ, R. *Video Compression Techniques*. Morgan Kaufmann Publishers, 1999.
- CHAPMAN, N. P.; Chapman, J. Digital multimedia. John Wiley & Sons, 2000.

- HALSALL, F. *Multimedia communications*: applications, networks, protocols, and standards. Addison-Wesley Publishing, 2000.
- SAYOOD, K. *Introduction to data compression*. 2^a ed. Morgan Kaufmann Publishers, 2000.
- SOARES, L. F. G.; TUCHERMAN, L.; CASANOVA, M. A. Fundamentos de Sistemas Multimídia. VIII Escola de Computação da SBC UFRGS, 1992.
- AZEVEDO, E.; CONCI, A. *Computação gráfica Volume 1*: processamento e análise de imagens digitais. Rio de Janeiro: Campus, 2003. 384p.
- CONCI, A.; AZEVEDO, E.; LETA, F. R. *Computação gráfica Volume 2*: Teoria e prática. Rio de Janeiro: Campus, 2007. 432p.

Componente	Carga Horária
Otimização de Sistemas	60h

Tipos de problemas de otimização. Programação linear: modelos de problemas, o método simplex e o problema do transporte. Programação não-linear: condições de otimalidade, buscas direcionais, métodos do gradiente e de Newton, restrições e funções de penalidade. Introdução as Meta-heurísticas: algoritmos genéticos e nuvem de partículas.

Bibliografia Básica

- GOLDBARG, M. C.; LUNA, H. P. L. *Otimização combinatória e programação linear*. 2ª ed. Rio de Janeiro: Campus, 2005. 536p.
- ZORNIG, P. *Introdução à programação não-linear*. Brasília: EDU-UNB, 2011. 395p;
- LOPES, H. S.; RODIGUES, L. C. A.; STEINER, M. T. A. *Meta-heurísticas em pesquisa operacional*. Omnipax Editora, 2013.

- ANTON, H.; BUSBY, R. C. Álgebra linear contemporânea. Porto Alegre: Bookman, 2006. 612p;
- SPIEGEL, M. R.; MOYER, R. E. *Álgebra*. 2ª ed. Porto Alegre: Bookman, 2004. 392p. (Coleção Schaum);
- LIPSCHUTZ, S.; LIPSON, M. *Álgebra Linear*. 4ª ed. Porto Alegre: Bookman, 2011. 434p. (Coleção Schaum);
- RUGGIERO, M. A. G.; LOPES, V. L. R. *Cálculo numérico*: aspectos teóricos, práticos e computacionais. 2ª ed. São Paulo: Makron Books, 1997. 422p;
- GILAT, A.; SUBRAMANIAM, V. *Métodos numéricos para engenheiros e cientistas*: uma introdução com aplicações usando o MATLAB. Porto Alegre: Bookman, 2008. 480p.

Componente	Carga Horária
Processamento Digital de Imagens	60h

Introdução: fundamentos de imagens digitais. Transformações de imagens. Melhoramento de imagens. Restauração de imagens. Técnicas de compressão. Segmentação, representação e descrição de imagens. Reconhecimento e interpretação de imagens.

Bibliografia Básica

- GONZALEZ, R. C.; WOODS, R. E. *Processamento Digital de Imagens*. 3^a ed. Prentice-Hall, 2010. 976p;
- PEDRINI, H.; SCHWARTZ, W. R. Análise de imagens digitais: princípios, algoritmos e aplicações. Thomsom Learning, 2007. 528p;
- SOLOMON, Chris; BRECKON, Toby. Fundamentos de Processamento Digital de Imagens Uma abordagem prática com exemplos em MATLAB. Rio de Janeiro: LTC, 2013. 306p. ISBN: 9788521623472.

- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- ANTON, H.; BUSBY, R. C. *Álgebra linear contemporânea*. Porto Alegre: Bookman, 2006. 612p.
- DINIZ, P. S. R.; SILVA, E. A. B., NETTO S. L. *Processamento digital de sinais*. 2^a ed. Porto Alegre: Bookman, 2014. 976p. ISBN: 9788582601235.
- OPPENHEIM, Alan V; WILLSKY, Alan S. *Sinais e sistemas*. 2.ed. São Paulo: Pearson Prentice Hall, 2010. 568p. ISBN: 9788576055044.
- HSU, Hwei. *Sinais e Sistemas*. 2.ed. Porto Alegre: Bookman, 2012. 495p. (Coleção Schaum) ISBN: 9788577809387.

Componente	Carga Horária
Processos Estocásticos	60h

Teoremas assintóticos da probabilidade. Variáveis aleatórias contínuas e discretas. Múltiplas variáveis aleatórias. Funções distribuição de probabilidade - Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Gaussiana e Estável. Funções de variáveis aleatórias e teorema do limite central restrito e generalizado. Processos Aleatórios - Caracterização, Cadeias de Markov, Processos de Poison, Wiener e Gaussiano. Densidade Espectral de Potência. Teoria da Estimação - Estimador de Máxima Verosimilhança, Bayes e LMS. Teoria de Decisão. Teoria de Enfileiramento.

Bibliografia Básica

- PAPOULIS, Athanasios; Pillai, S. Unnikrishna *Probability, Random Variables and Stochastic Processes*. 4th edition. McGraw-Hill Europe, 2002. ISBN: 0071226613.
- MONTGOMERY, Douglas C; RUNGE, George C. Estatística aplicada e probabilidade para engenheiros. 6 ed. São Paulo, LTC, 2016. ISBN: 9788521632412.
- ALCENCAR, Marcelo Sampaio. Probabilidade e processos estocásticos. São Paulo, Érica, 2008. ISBN: 8536502169.

- BARBETTA, Pedro A.; REIS, Marcelo M.; BORNIA, Antônio C. *Estatística: para cursos de engenharia e informática*. 3.ed. São Paulo: Atlas, 2010. ISBN: 8522459940.
- HINES, William W et al. *Probabilidade e estatística na engenharia*. 4.ed. Rio de Janeiro: LTC, 2013. ISBN: 8521614748.
- MORETTIN, Pedro A; BUSSAB, Wilton O. *Estatística básica*. 9.ed. São Paulo: Saraiva, 2017. ISBN: 8547220224.
- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.

Componente	Carga Horária
Programação Web	60h

Visão geral de programação para Web. Arquitetura cliente-servidor. Formulários HTML. Programação no lado cliente e no lado servidor. Arquitetura em camadas (GUI, negócio e dados) de referência. Padrões de projeto para refinamento de arquitetura em camadas. Tecnologias Java para programação no servidor (*Servlets*, JSP/JSF e EJB). Serviços Web.

Bibliografia Básica

- GONÇALVES, E. *Desenvolvendo aplicações Web com JSP, SERVELTS, JAVASERVER FACES, HIBERNATE, EJB 3, PERSISTENCE E AJAX.* Rio de Janeiro: Ciência Moderna, 2007. 776p;
- NIELSEN, J.; LORANGER, H. *Usabilidade na Web:* projetando websites com qualidade. Rio de Janeiro: Elsevier, 2007. xxiv, 406 p. ISBN: 9788535221909;
- DEITEL, P. J. *Java*: como programar. 8.ed. São Paulo: Pearson Prentice Hall, 2010. 1144 p. ISBN: 9788576055631.

- BUDD, A.; MOLL, C.; COLLISON, S. *Criando páginas Web com CSS:* soluções avançadas para padrões web. São Paulo: Prentice-Hall, 2006. 284p;
- TITEL, E. XML. Porto Alegre: Bookman, 2003. 208p. (Coleção Schaum);
- BARNES, D. J.; KÖLLING, M. *Programação orientada a objetos com Java 1*:uma introdução prática usando o BlueJ. 4ª ed. São Paulo: Pearson, 2009. 480p.
- DATE, C. J. *Introdução a sistemas de bancos de dados*. 8ª ed. Rio de Janeiro: Campus, 2003. 870p;
- SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHAN, S. Sistema de banco de dados. 3ª ed. São Paulo: Makron Books, 2005. 904p.

Componente	Carga Horária
Redes de Sensores Sem-Fio	60h

Caracterização das Redes de Sensores Sem-Fio (RSSF): taxonomia e tipos de aplicações. Arquiteturas de nós sensores: comunicação (componentes, padrões e tecnologias), identificação de nós sensores e protocolos de comunicação (camadas de enlace, física e demais). Modelos para representação de estados das RSSF: principais tipos, correlação entre modelos e obtenção de modelos (energia, topologia, conectividade e cobertura). Controle e supervisão de RSSF: arquitetura e sistemas autonômicos. Aplicações e segurança de RSSF.

Bibliografia Básica

- KUROSE, J. F.; ROSS K W. *Redes de Computadores e a Internet:* uma abordagem top-down. 5ª ed. São Paulo: Pearson, 2010. 640p.
- FOROUZAN, B. A. *Comunicação de dados e redes de computadores*. 4ª ed. Rio de Janeiro: McGraw-Hill, 2008. 1134p.
- LATHI, B. P; DING, Zhi. Sistemas de comunicações analógicos e digitais modernos.

- TANENBAUM, A. S; WETHERALL, D. *Redes de Computadores*. 5ª ed. São Paulo: Pearson, 2011. 600p.
- COMER, D. E. *Redes de Computadores e Internet*: abrange transmissão de dados, ligações inter-redes, web e aplicações. 4ª ed. Porto Alegre: Bookman, 2009. 720p.
- ALBUQUERQUE, E. Q. *QoS Qualidade de Serviços em Redes de Computadores*. Rio de Janeiro: Campus, 2003. 264p.
- TANENBAUM, A. S.; STEEN, M. V. *Sistemas Distribuídos:* princípios e paradigmas. 2ª ed. São Paulo: Pearson, 2008. 416p.
- TANENBAUM, A. S. Sistemas operacionais modernos. 3ª ed. São Paulo: Prentice-Hall, 2010. 672p.

Componente	Carga Horária
Redes em Banda Larga	60h

Rede híbrida fibra-cabo. Rede a par metálico: DSL, HDSL, ADSL, VDSL. A Hierarquia Digital Síncrona: SDH. Redes CATV. BISDN e ATM. Estruturas *Backbone* Serviços em Banda Larga.

Bibliografia Básica

- COMER, Douglas E. Redes de computadores e internet: abrange transmissão de dados, ligações inter-redes, web e aplicações. 4.ed. Porto Alegre: Bookman, 2009. 632 p. ISBN: 9788560031368.
- TANENBAUM, A. S.; WETHERALL, D. *Redes de computadores*. 5ª ed. São Paulo: Pearson, 2011. 600p;
- LATHI B. P.; DING Z. Sistemas de comunicações analógicos e digitais modernos. 4ª ed. Rio de Janeiro: LTC, 2012. 862p;

- HAYKIN, S. Sistemas de comunicação. 4ª ed. Porto Alegre: Bookman, 2004;
- PROAKIS, J. G.; SALEHI, M. Fundamentals of communication systems. 2^a ed. Prentice-Hall, 2013;
- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- STALLINGS, W. *ISDN and Broadband ISDN with Frame Relay and ATM*. 4^a ed. Prentice-Hall, 1999. 542p;
- SMOUTS, M. Packet Switching Evolution from Narrowband to Broadband ISDN. The Artech House Telecommunications Library, 2000.

Componente	Carga Horária
Redes Neurais Artificiais	60h

Conceitos básicos de redes neurais. Algoritmo do *Perceptron*. Rede Neural sob o ponto de vista estatístico. Algoritmo de LMS. Algoritmo de Retropropagação. Redes de funções de base radial. Redes recursivas. Algoritmos de aprendizado auto-organizado.

Bibliografia Básica

- HAYKIN, S. Redes Neurais: princípios e prática. 2ª ed. Porto Alegre: Bookman, 2001.
 898p;
- SILVA, Ivan Nunes; SPATTI, Danilo Hernane; FLAUZINO, Rogério Andrade. Redes Neurais Artificiais Para Engenharia E Ciências Aplicadas. Curso Prático. São Paulo: Artliber, 2016. 862p. ISBN: 9788588098879.
- BRAGA, Antônio de Pádua; CARVALHO, André Ponce de Leon F.; LUDERMIR, Teresa Bernarda. *Redes Neurais Artificiais:* Teoria e Aplicações. Rio de Janeiro: LTC, 2007. 248p. ISBN: 9788521615644.

- ANTON, Howard; BUSBY, Robert C. Álgebra linear Contemporânea. Porto alegre: Bookman, 2011. 610p. ISBN: 9788536306155.
- RUSSELL, Stuart Jonathan; NORVIG, Peter. *Inteligência artificial*. 2. ed. Rio de Janeiro: Elsevier, 2004. 1021 p. ISBN: 9788535211771.
- LIPSCHUTZ, S.; LIPSON, M. *Álgebra Linear*. 4ª ed. Porto Alegre: Bookman, 2011. 434p. (Coleção Schaum);
- RUGGIERO, M. A. G.; LOPES, V. L. R. *Cálculo numérico*: aspectos teóricos, práticos e computacionais. 2ª ed. São Paulo: Makron Books, 1996. 422p;
- COPPIN, Ben. *Inteligência Artificial*. Rio de Janeiro: LTC, 2010. 664p. ISBN: 9788521617297.

Componente	Carga Horária
Resistência dos Materiais I	60h

Determinação de esforços simples. Traçado de diagramas para estruturas isostáticas. Tração e compressão. Flexão pura e simples. Flexão assimétrica e composta com tração ou compressão. Cisalhamento. Ligações parafusadas e soldadas. Torção simples.

Bibliografia Básica

- LINDENBERG NETO, H., "Introdução à Mecânica das Estruturas" EPUSP-PEF, São Paulo, 1996.
- MILLER, G.R., COOPER, S. C., "Visual Mechanics Beams & Stress States" PWS, Boston, 1998.
- TIMOSHENKO, S. P. Resistência dos Materiais (v.2). Rio de Janeiro: Livros Técnicos e Científicos. 1ª edição. 1976.BEER, Ferdinando P. e Johnston, RUSSELL E. Resistência dos Materiais. 1ª ed. Editora Makron Books. 2008

- MIROLIUBOV et al. Problemas de Resistência dos Materiais. 1ª edição. Ed. MIR.
- ALMEIDA, L. D. de F. Resistência dos Materiais. 1ª ed. São Paulo. Ed. Erika. 1993.
- BEER, Ferdinando P. e Johnston, RUSSELL E. Resistência dos Materiais.1ª ed. Editora Makron Books. 2008
- HIBBELER, Russel Charles. Resistência dos materiais. 7.ed. Pearson, 2010.

Componente	Carga Horária
Segurança de Redes	60h

Conceitos básicos sobre segurança da informação. Vulnerabilidades, ameaças e ataques. Autenticação, criptografia e assinatura digital. Aspectos de segurança para aplicações em redes TCP/IP. Políticas de segurança. Firewall, IDS e IPS.

Bibliografia Básica

- STALLINGS, W. Criptografia e segurança de redes: princípios e práticas. 6ª ed. São Paulo: Pearson, 2015;
- STALLINGS, W.; BROWN, L. Segurança de computadores: princípios e práticas. 2ª ed. Rio de Janeiro: Elsevier, 2014;
- FREITAS FERREIRA, F. N.; DE ARAUJO, M. T. Política de segurança da informação: guia prático para elaboração e implementação. 2ª ed. Rio de Janeiro: Ciência Moderna, 2008. 264p.

- CHESWICK, W. R.; BELLOVIN, S. M.; RUBIN, A. D. Firewalls e segurança na Internet: repelindo o hacker ardiloso. 2ª ed. Porto Alegre: Bookman, 2005. 400p.
- KUROSE, J. F.; ROSS, K. W. Redes de Computadores e a Internet: uma abordagem top down. 6ª ed. São Paulo: Pearson, 2013.
- TANENBAUM, A. S; WETHERALL, D. Redes de Computadores. 5ª ed. São Paulo: Pearson, 2011. 600p.
- COMER, D. E. Redes de Computadores e Internet. 6ª ed. Porto Alegre: Bookman, 2016.
- STALLINGS, W.; CASE, T. Redes e sistemas de comunicação de dados. 7ª ed. Rio de Janeiro: Elsevier, 2016.

Componente	Carga Horária
Sistemas Não-Lineares	60h

Existência e unicidade de solução de equações diferenciais não-lineares. Fenômenos não-lineares. Plano de fase. Funções descritivas e método da primeira harmônica. Estabilidade pela teoria de Lyapunov. Estabilidade pelo critério de Popov. Controladores Não Lineares.

Bibliografia Básica

- CASTRUCCI, Plínio De Lauro; BITTAR, Anselmo. *Controle automático*. Rio de Janeiro: LTC, 2011. 476p. ISBN: 9788521617860.
- DORF, Richard C; BISHOP, Robert H. *Sistemas de controle modernos*. Rio de Janeiro: LTC, 2011. 724p. ISBN: 9788521617143.
- CASTRUCCI, Plínio. *Sistemas Não-lineares*. São Paulo: Edgard Blucher, 1981. (Série Controle Automático de Sistemas Dinâmicos, 2).

- KHALIL, H. K. *Nonlinear systems*. 3^a ed. New Jersey: Prentice-Hall, 2002. 750p;
- SASTRY, S. Nonlinear systems: analysis, stability and control. Springer, 1999. 669p;
- OGATA, Katsuhiko. *Engenharia de controle moderno*. São Paulo: Pearson Prentice Hall, 2010. 800 p. ISBN: 9788576058106.
- NISE, N. S. *Engenharia de sistemas de controle*. 6ª ed. Rio de Janeiro: LTC, 2012. 760p;
- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.

Componente	Carga Horária
Teoria da Informação e Codificação	60h

Medida da informação. Codificação de fontes discretas. Capacidade dos canais de comunicação discretos. Canais contínuos e comparação de sistemas. Códigos para controles de erro.

Bibliografia Básica

- LATHI B. P.; DING Z. Sistemas de comunicações analógicos e digitais modernos. 4ª ed. Rio de Janeiro: LTC, 2012. 862p.
- HAYKIN, Simon; MOHER, Michael. *Sistemas de comunicação*. 5.ed. Porto Alegre: Bookman, 2011. 512p. ISBN: 9788577807253.
- HAYKIN, Simon; MOHER, Michael. Sistemas modernos de comunicações wireless.
 Porto Alegre: Bookman, 2009. ISBN: 9788577801558.

- LATHI, B. P. *Sinais e sistemas lineares*. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- OPPENHEIM A. V.; WILSKY, A. S.; NAWAB, S. H. *Sinais e sistemas*. 2^a ed. São Paulo: Pearson, 2010. 592p.
- KEISER, Gerad. *Comunicações por Fibras Óticas*. McGraw-Hill Education, 2014. 694p. ISBN: 9788580553987.
- RAPPAPORT, T. S. *Comunicações sem Fio:* Princípios e Práticas. 2ª ed. São Paulo: Pearson Prentice Hall, 2009. ISBN: 9788576051985.
- HSU, Hwei. *Sinais e Sistemas*. 2.ed. Porto Alegre: Bookman, 2012. 495p. (Coleção Schaum) ISBN: 9788577809387.

Componente	Carga Horária
Tópicos Especiais – Engenharia de Software	60h

Ementa livre relacionada ao componente curricular Engenharia de Software.

Bibliografia Básica

- SOMMERVILLE, I. Engenharia de software. 9ª ed. São Paulo: Pearson, 2011. 544p;
- PRESSMAN, R. Engenharia de software: uma abordagem profissional. 7ª ed. Rio de Janeiro: McGraw-Hill, 2011. 780p;
- BEZERRA, E. *Princípios de análise de sistemas com UML*. 2ª ed. Rio de Janeiro: Campus, 2007. 392p.

- PAULA FILHO, W. P. *Engenharia de software*: fundamentos, métodos e padrões. 3ª ed. Rio de Janeiro: LTC, 2009. 1358p;
- PFLEEGER, S. L. *Engenharia de software*: teoria e prática. 2ª ed. São Paulo: Makron Books, 2004;
- LARMAN, C. *Utilizando UML e padrões*. 3ª ed. Porto Alegre: Bookman, 2007. 696p;
- BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. *UML*: guia do usuário. 2ª ed. Rio de Janeiro: Campus, 2012. 552p;
- FLOWER, M. *UML Essencial*: um breve guia para a linguagem padrão de modelagem de objetos. 3ª ed. Porto Alegre: Bookman, 2005. 162p.

Componente	Carga Horária
Tópicos Especiais – Redes de Computadores	60h

Ementa livre relacionada ao componente curricular Redes de Computadores.

Bibliografia Básica

- KUROSE, J. F.; ROSS K W. *Redes de Computadores e a Internet:* uma abordagem top-down. 5^a ed. São Paulo: Pearson, 2010. 240p.
- TANENBAUM, A. S; WETHERALL, D. *Redes de Computadores*. 5ª ed. São Paulo: Pearson, 2011. 600p.
- COMER, D. E. *Redes de Computadores e Internet:* abrange transmissão de dados, ligações inter-redes, web e aplicações. 4ª ed. Porto Alegre: Bookman, 2009. 720p.

- STALLINGS, W. *Arquitetura e organização de computadores*. 8ª ed. Rio de Janeiro: Prentice Hall, 2010. 640p.
- FOROUZAN, B. A. *Comunicação de dados e redes de computadores*. 4ª ed. Rio de Janeiro: McGraw-Hill, 2008. 1134p.
- ALBUQUERQUE, E. Q. *QoS Qualidade de Serviços em Redes de Computadores*. Rio de Janeiro: Campus, 2013. 264p.
- PINHEIRO, M. S. *Guia completo de cabeamento de redes*. 2.ed. Rio de Janeiro: Elsevier, 2015. 312p.
- HAYKIN, S.; MOHER, M. Sistemas modernos de comunicação sem-fio. Porto Alegre: Bookman, 2008. 580p.

Componente	Carga Horária
Tópicos Especiais – Sistemas de Controle	60h

Ementa

Ementa livre relacionada ao componente curricular Sistemas de Controle II.

Bibliografia Básica

- OGATA, Katsuhiko. *Engenharia de controle moderno*. São Paulo: Pearson Prentice Hall, 2010. 800 p. ISBN: 9788576058106.
- NISE, Norman S. *Engenharia de sistemas de controle*. Rio de Janeiro: LTC, 2012. 659p. ISBN: 978-85216-2135-5.
- CASTRUCCI, Plínio De Lauro; BITTAR, Anselmo. *Controle automático*. Rio de Janeiro: LTC, 2011. 505476p. ISBN: 9788521617860.

Bibliografia Complementar

- DORF, Richard C; BISHOP, Robert H. *Sistemas de controle modernos*. Rio de Janeiro: LTC, 2011. 724p. ISBN: 9788521617143.
- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- OPPENHEIM, Alan V; WILLSKY, Alan S. *Sinais e sistemas*. 2.ed. São Paulo: Pearson Prentice Hall, 2010. 568p. ISBN: 9788576055044.
- IRWIN, J. David; NELMS, R. Mark. *Análise básica de circuitos para engenharia*. Rio de Janeiro: LTC, 2016. 679p. ISBN: 9788521621805.
- HAYT, William H; KEMMERLY, Jack E; DURBIN, Steven M. *Análise de circuitos em engenharia*. São Paulo: McGraw-Hill, 2008. 858p. ISBN: 9788577260218.

Componente	Carga Horária
Tópicos Especiais – Sistemas de Transmissão de Dados	60h

Ementa

Ementa livre relacionada ao componente curricular Sistemas de Transmissão de Dados.

Bibliografia Básica

- LATHI, B. P; DING, Zhi. *Sistemas de comunicações analógicos e digitais modernos*. Rio de Janeiro: LTC, 2012. 838p. ISBN: 9788521620273.
- HAYKIN, Simon; MOHER, Michael. *Sistemas de comunicação*. 5.ed. Porto Alegre: Bookman, 2011. 512p. ISBN: 9788577807253.
- OPPENHEIM, Alan V; WILLSKY, Alan S. *Sinais e sistemas*. 2.ed. São Paulo: Pearson Prentice Hall, 2010. 568p. ISBN: 9788576055044.

Bibliografia Complementar

- LATHI, B. P. Sinais e sistemas lineares. 2.ed. Porto Alegre: Bookman, 2007. 856p. ISBN: 9788560031139.
- PROAKIS, John G; MANOLAKIS, Dimitris G.. *Digital signal processing*. 4.ed. New Jersey: Prentice Hall, 2007. 1084p. ISBN: 0131873741.
- DINIZ, Paulo S. R; SILVA, Eduardo A. B. Da; NETTO, Sergio L.. *Processamento digital de sinais:* projeto e análise de sistemas. 2. ed. Porto Alegre: Bookman, 2014. 976p. ISBN: 9788582601235.
- HSU, Hwei. *Sinais e Sistemas*. 2.ed. Porto Alegre: Bookman, 2012. 495p. (Coleção schaum) ISBN: 9788577809387.
- HAYKIN, Simon; MOHER, Michael. Sistemas modernos de comunicações wireless. Porto Alegre: Bookman, 2009. ISBN: 9788577801558.

Componente	Carga Horária
Tópicos Especiais – Sistemas Digitais	60h

Ementa

Ementa livre relacionada ao componente curricular Sistemas Digitais.

Bibliografia Básica

- VAHID, Frank. *Sistemas digitais:* projeto, otimização e HDLs. Porto Alegre: Artmed, 2008. 560p. ISBN: 9788577801909.
- PEDRONI, Volnei. *Eletrônica digital moderna e VHDL=Digital eletronics and design with VHDL*. Rio de Janeiro: Elsevier, 2010. 619p. ISBN: 9788535234657.
- D'AMORE, Roberto. *VHDL:* descrição e síntese de circuitos digitais. Rio de Janeiro: LTC, 2012. 292 p. ISBN: 8521620549.

Bibliografia Complementar

- IDOETA, Ivan Valeije. *Elementos de eletrônica digital*. 41.ed. São Paulo: Érica, 2012. 544p. ISBN: 9788571940192.
- TANENBAUM, Andrew S. *Organização estruturada de computadores*. 6.ed. São Paulo: Pearson, 2013. 605p. ISBN: 9788581435398.
- STALLINGS, William. *Arquitetura e organização de computadores*. 8.ed. São Paulo: Pearson, 2010. 624 p. ISBN: 9788576055648.
- HENNESSY, John L; PATTERSON, David A.. *Arquitetura de computadores:* uma abordagem quantitativa. 5.ed. Rio de Janeiro: Elsevier, 2014. 501p. ISBN: 9788535261226.
- NULL, Linda; LOBUR, Julia. *Princípios básicos de arquitetura e organização de computadores*. 2. ed. Porto Alegre: Bookman, 2010. 821p. ISBN: 9788577807376.

5. ADMINISTRAÇÃO ACADÊMICA

5.1. Coordenação do curso

O coordenador de curso atua em conjunto com os professores, tentando detectar as necessidades dos discentes em relação ao curso e cumpri-las de maneira mais adequada, presidindo o Colegiado de Curso e o Núcleo Docente Estruturante, e executando ações que visem à melhoria do curso de forma coerente e junto com a direção do *campus*, enviando-a demandas, quando necessário.

No tocante à infraestrutura para desenvolver as suas atividades, a coordenação possui uma sala individual equipada com computador, mesa e cadeiras para conhecer e escutar as demandas da comunidade do curso e buscar a melhor solução possível.

5.2. Colegiado de Curso

O Colegiado de Curso é composto por membros efetivos do corpo docente da Instituição, conforme descrito em resolução específica e, organizará discussões e efetuará o acompanhamento da qualificação didático-pedagógica dos docentes, mediante levantamentos semestrais que permitam observar a produção e o investimento realizado pelos mesmos na socialização de pesquisas em diferentes espaços da comunidade.

5.3. Núcleo Docente Estruturante

O Núcleo Docente Estruturante (NDE) é regido pela resolução CONAES n°01/2010, sendo formado por 9 (nove) membros do corpo docente do curso, incluindo o coordenador do curso. Os membros serão indicados pelo Colegiado de Curso, e devem exercer liderança acadêmica no âmbito do mesmo, percebida na produção de conhecimentos na área, no desenvolvimento do ensino, e em outras dimensões entendidas como importantes pela instituição, e que atuem sobre o desenvolvimento do curso. Os membros terão mandato de 4 (quatro) anos.

Em termos funcionais, o NDE interage junto ao Colegiado de Curso (pedagógica, de ensino, de extensão, entre outras) no intuito de contribuir para a consolidação e efetivação de todos os aspectos descritos neste PPC. Sendo assim, o NDE deve atuar em diversas frentes, o que pode ser realizado através do cumprimento das seguintes atividades:

- Avaliação e proposição ao Colegiado de Curso acerca de eventuais alterações necessárias neste PPC, no intuito de mantê-lo sempre atualizado e consoante às normas da UFERSA e as Diretrizes Curriculares Nacionais propostas para os cursos de graduação;
- Análise dos PGCCs (Programa Geral de Componente Curricular) dos componentes curriculares ministradas no curso e detecção de quais aspectos das mesmas (ementa, bibliografia, entre outros) estão divergentes ao que está previsto neste PPC;
- Encaminhamento de propostas acerca de alterações necessárias nos PGCCs ao Colegiado de Curso;
- Definição e proposição de mecanismos e itens de avaliação para o Colegiado de Curso, os quais podem auxiliar o NDE na verificação e acompanhamento acerca do cumprimento de todas as dimensões presentes no perfil de egresso desejado;
- Análise dos resultados das avaliações realizadas pela CPA e detecção de eventuais fragilidades que podem estar prejudicando a formação dos discentes em consonância ao perfil de egresso desejado;
- Realização de estudos visando definir e propor estratégias ao Colegiado de Curso para suprir as fragilidades detectadas no item anterior;
- Verificação contínua dos recursos físicos e humanos existentes na UFERSA campus Pau dos Ferros e encaminhamento de relatórios ao Colegiado de Curso retratando aspectos deficientes em relação a tais recursos.

6. CORPO DOCENTE

6.1. Perfil docente

O corpo docente do curso de Engenharia de Computação da UFERSA encontra-se composto por 35 docentes descritos na Tabela 10, sendo:

- 66,7% de Doutores nas áreas específicas de computação, com 12
 Doutores e 6 Mestres
- 70,6% de Doutores nas áreas básicas, com 12 Doutores e 5 Mestres.
- 63,4% de Doutores no total, com 24 Doutores e 11 Mestres.

O curso conta com um corpo docente com experiência no magistério superior que vai de 1 ano até 18 anos de experiência.

Tabela 10 - Corpo Docente da UFERSA/Pau dos Ferros

Nome	Área de formação	Titulação	Regime de Trabalho
Ádller de Oliveira Guimarães	Engenharia Elétrica	Doutorado	Dedicação Exclusiva
André Luiz Sena da Rocha	Estatística	Mestrado	Dedicação Exclusiva
Antônio Diego Silva Farias	Matemática	Doutorado	Dedicação Exclusiva
Bruno Fontes de Sousa	Matemática	Mestrado	Dedicação Exclusiva
Cecílio Martins de Sousa Neto	Automação Industrial	Doutorado	Dedicação Exclusiva
Claudio Andrés Callejas Olguín	Ciência da Computação	Doutorado	Dedicação Exclusiva
Francisco Ernandes Matos Costa	Física	Doutorado	Dedicação Exclusiva
Francisco Carlos Gurgel da Silva Segundo	Engenharia Elétrica	Doutorado	Dedicação Exclusiva
Glauber Barreto Luna	Ciências Sociais	Mestrado	Dedicação Exclusiva
Glaydson Francisco	Física	Doutorado	Dedicação Exclusiva

Barros de Oliveira			
Hélder Fernando de Araújo Oliveira	Engenharia de Computação	Doutorado	Dedicação Exclusiva
Hidalyn Theodory Clemente Mattos de Souza	Física	Doutorado	Dedicação Exclusiva
José Ferdinandy Silva Chagas	Ciência da Computação	Mestrado	Dedicação Exclusiva
Sanderlir Silva Dias	Química	Doutorado	Dedicação Exclusiva
Lauro César Bezerra Nogueira	Ciências Econômicas	Doutorado	Dedicação Exclusiva
Laysa Mabel de Oliveira Fontes	Ciência da Computação	Doutorado	Dedicação Exclusiva
Lenardo Chaves e Silva	Ciência da Computação	Doutorado	Dedicação Exclusiva
Lino Martins de Holanda Júnior	Física	Doutorado	Dedicação Exclusiva
Marco Diego Aurélio Mesquita	Ciência da Computação	Mestrado	Dedicação Exclusiva
Maria Vanice Lacerda de Melo Barbosa	Letras	Doutorado	Dedicação Exclusiva
Mônica Paula de Sousa	Matemática	Mestrado	Dedicação Exclusiva
Náthalee Cavalcanti de Almeida Lima	Tecnologia em Sistemas de Telecomunicações	Doutorado	Dedicação Exclusiva
Otávio Paulino Lavor	Matemática	Doutorado	Dedicação Exclusiva
Patrick César Alves Terrematte	Tecnologia de Análise e Desenvolvimento de Sistemas	Mestrado	Dedicação Exclusiva
	Análise e Desenvolvimento de	Mestrado	Dedicação Exclusi

Paulo Gustavo da Silva	Administração	Doutorado	Dedicação Exclusiva
Pedro Thiago Valério de Sousa	Engenharia Elétrica	Doutorado	Dedicação Exclusiva
Rodrigo Soares Semente	Engenharia de Computação	Doutorado	Dedicação Exclusiva
Sharon Dantas da Cunha	Física	Doutorado	Dedicação Exclusiva
Thiago Pereira Rique	Ciência da Computação	Mestrado	Dedicação Exclusiva
Verônica Maria Lima Silva	Engenharia de Computação	Doutorado	Dedicação Exclusiva
Vinícius Samuel Valério de Souza	Engenharia de Computação	Doutorado	Dedicação Exclusiva
Kátia Cilene da Silva Santos	Filosofia	Doutorado	Dedicação Exclusiva
Shirlene Kelly Santos Carmo	Engenharia Química	Doutorado	Dedicação Exclusiva

7. INFRAESTRUTURA

A UFERSA *campus* Pau dos Ferros dispõe de uma área física total, incluindo terrenos, de 10 hectares. A seguir a identificação geral das unidades:

Construídos:

- 1 (um) Prédio administrativo;
- 2 (dois) Blocos de Salas de aula;
- 3 (três) Blocos de Laboratórios;
- 2 (dois) Blocos de Salas de Professores;
- Biblioteca;

- Centro de Convivência e Auditório;
- Almoxarifado e Patrimônio;
- Garagem;
- Restaurante Universitário
- Residência Universitária

São disponibilizados à comunidade acadêmica do Curso, além das instalações gerais:

- Salas de aula;
- Sala para a coordenação;
- Sala de atendimento pedagógico e assistência social;
- Sala de atendimento psicológico;
- Sala para professores;
- Laboratórios.

Todos esses ambientes possuem dimensões adequadas ao seu uso, são mobiliados apropriadamente, contam com boas condições acústicas e de iluminação, com fácil acesso às pessoas com deficiência e equipados com computadores ligados em rede administrativa.

Mais especificamente, são 28 (vinte e oito) salas de aula compostas por datashow, carteiras, birô, quadro branco e ar-condicionado. Todas as salas possuem capacidade máxima de pelo menos 40 alunos. Com relação às salas para professores, em cada uma delas são disponibilizados gabinetes compostos por 2 (dois) computadores, 2 (dois) telefones, 2(dois) armários, 2(duas) mesas, 4(quatro) cadeiras e 1(um) ar-condicionado.

7.1. Laboratório de Tecnologia da Informação (LTI)

Para atender aos cursos na área de computação, a UFERSA *campus* Pau dos Ferros, possui o prédio de Laboratórios de Tecnologia da Informação, neste ambiente, é destinado espaços aos laboratórios de formação geral e de formação

específica. Além dos laboratórios citados, possui também, salas de pesquisa, sala de reuniões, sala de aula, sala de videoconferência e espaço *coworking* para o núcleo de incubação tecnológico e social (NITS).

7.2. Biblioteca

A biblioteca da UFERSA campus Pau dos Ferros está situada em local central e estratégico. É um ambiente agradável que toda a comunidade pode usufruir de espaço de estudo com cabines individuais e coletivas com mesas e quadros. Todo o ambiente é climatizado e, na parte do acervo, a biblioteca conta com vários títulos que atendem a toda demanda do curso de Engenharia de Computação. Além do espaço físico, a universidade possui o acervo virtual de livros das principais editoras acadêmicas do Brasil com diversos títulos que os alunos podem acessar remotamente.

7.3. Laboratórios de Formação Geral

São disponibilizados ao curso 2 (dois) laboratórios, com 60 computadores, com o objetivo de atender aos componentes curriculares de cunho prático e que necessitem da utilização de sistemas de *software* específicos do curso. Os laboratórios de Informática possuem área construída de 76,80m² cada, está situado no Prédio de Laboratório de Engenharias I, cada laboratório contém o seguinte mobiliário: mesas formicadas; 30 cadeiras para alunos, cadeira de encosto/assento almofadado para professor, e quadro branco com iluminação auxiliar, para utilização de pincel atômico. Dispõem também de computador *desktop* e equipamento *datashow* para uso de projeções.

A iluminação pode ser natural ou artificial; se natural, ocorre através de janelas máximo-ar em toda extensão lateral, voltada para o exterior da edificação; se artificial, ocorre através de 12 luminárias duplas com aletas e lâmpadas de 40 volts. Quanto à climatização, é garantida pelo uso de ar-condicionado tipo *split*, oferecendo conforto aos presentes em qualquer dos turnos. Para facilidade de limpeza, a sala apresenta piso industrial, e paredes revestidas até 1,15m com revestimento cerâmico, e após essa altura são emassadas e pintadas com tinta acrílica, cor branco gelo.

7.4. Laboratório de Formação Específica

A infraestrutura dispõe de dois laboratórios didático especializado, são eles: Laboratório de eletrônica e Laboratório de automação. O Laboratório de Eletrônica é destinado às práticas laboratoriais das seguintes disciplinas: Circuitos Digitais, Circuitos Elétricos, Eletrônica Analógica, Sistemas Digitais, Instrumentação, Sistemas de Transmissão de Dados, Sistemas de Controle I e II, Automação Industrial, entre outras. As práticas relacionadas à estas disciplinas são de extrema importância para a fixação do conteúdo visto em sala de aula, além de proporcionar o conhecimento prático acerca de problemas relacionados à indústria, trazendo essa problemática para o cotidiano do aluno.

O laboratório de automação/robótica tem por finalidade a consolidação de conhecimentos teóricos das disciplinas, Instrumentação, Sistemas de Controle I, Sistemas de Controle II, Modelagem de Sistemas Dinâmicos, Eletrônica Analógica, Automação Industrial, Introdução à Robótica, Acionamentos para Controle e Automação, Redes Industriais, Redes de Sensores Sem-Fio, Sistemas Não-Lineares, Tópicos Especiais – Sistemas de Controle, por meio de atividades práticas que visam contribuir na capacitação dos discentes do curso de engenharia da computação por meio de experimentos. Além disso, propiciar a melhoria do processo de ensino-aprendizagem, desenvolvendo atividades de ensino, pesquisa e extensão.

Assim, o processo ensino-aprendizagem se torna bem mais eficiente, trazendo um ambiente de aplicação do conhecimento de sala, favorecendo a fixação do conteúdo ministrado.

8. SISTEMÁTICA DE AVALIAÇÃO

O sistema de avaliação e acompanhamento do projeto de curso possui função pedagógica. Por meio desse sistema é possível comprovar o cumprimento dos objetivos, habilidades e competências do curso, atuando como ferramenta para identificação dos progressos e dificuldades de docentes e discentes. Por

meio da função de controle, estas informações podem ser utilizadas para realização de ajustes e correções necessárias à melhoria do curso. Devem ser fornecidos dados quantitativos e qualitativos para que sejam tomadas decisões acerca do que se deve fazer para a melhoria do curso. Entre as formas de obtenção de dados estão os questionários de avaliação pedagógica docente, análise dos históricos dos alunos, questionários acerca da infraestrutura do curso e da Instituição, do acervo da biblioteca, entre outros. Além dessas formas de obtenção de dados, podem ser consideradas de palestras e seminários apresentados por: docentes do curso, estudantes e convidados da UFERSA, outras IES, empresas e pela sociedade.

8.1. Avaliação e Acompanhamento no Âmbito do SINAES

O Sistema Nacional de Avaliação da Educação Superior (SINAES) tem como finalidade analisar as instituições, seus respectivos cursos e o desempenho discente (INEP, 2015a). O processo avaliativo leva em consideração os três pilares principais da educação (ensino, pesquisa e extensão), bem como o papel social da instituição, gestão da instituição e corpo docente. O SINAES foi instituído pelo Ministério da Educação (MEC) no ano de 2004, por meio da Lei nº 10.861 de 14 de abril de 2004 (BRASIL, 2004), com o objetivo de assegurar a realização dos seguintes processos avaliativos:

- Avaliação das Instituições de Educação Superior (IES) do país;
- Avaliação dos cursos de graduação quanto às condições de ensino oferecidas (instalações físicas, organização didático-pedagógica, perfil do corpo docente, etc.);
- Avaliação do desempenho acadêmico dos discentes, o qual é realizado por meio do Exame Nacional de Desempenho dos Estudantes – ENADE (INEP, 2015b).

A avaliação institucional é o instrumento central da análise, visando conhecer as qualidades e deficiências da instituição, de forma a identificar os graus de envolvimento e comprometimento de seus professores, estudantes e servidores para com as prioridades básicas da instituição. Esse processo de avaliação constitui-se, basicamente, de uma autoavaliação institucional em conjunto com uma avaliação externa.

A autoavaliação institucional é um processo por meio do qual a UFERSA analisa internamente sua organização, administração, missão e políticas efetivamente realizadas. Sua realização pela Comissão Própria de Avaliação (CPA) tem como objetivo não apenas identificar as práticas exitosas, mas também os pontos fracos, a fim de que sejam corrigidas, possibilitando um maior conhecimento de sua própria realidade, bem como a melhoria da qualidade educativa. Essa AUTOAVALIAÇÃO tem por finalidade:

- 1. Impulsionar um processo criativo de autocrítica da Instituição, como evidência da vontade política de autoavaliar-se para garantir a qualidade da ação acadêmica:
- 2. Identificar fragilidades, necessidades, incongruências e os avanços conseguidos;
- 3. Fornecer resultados estatísticos à instituição para que a mesma decida se elimina, mantém ou modifica qualquer situação avaliada;
- 4. Ajudar a Instituição a se desenvolver com qualidade e garantir a sua permanência proativa na atividade acadêmica no Brasil.

Após a obtenção dos dados da avaliação do Curso de Engenharia de Computação pelo Programa de Autoavaliação Institucional, é elaborado um relatório, no qual são observados os pontos com alguma fragilidade. Posteriormente, os resultados são discutidos com o Núcleo Docente Estruturante (NDE) e Colegiado de Curso para a criação de um plano de ação que será implementado no semestre seguinte.

Quanto à forma de avaliação dos cursos, o MEC instituiu, por meio da Portaria Normativa nº 4 de 05 de agosto de 2008 (MEC, 2008), o Conceito Preliminar de Curso (CPC), cujo valor é calculado a partir de informações de cada curso e das notas do ENADE. Nesse ponto, o valor do CPC atribuído a cada curso pode variar de 1 a 5, sendo considerados satisfatórios os cursos que tiverem conceito igual ou superior a 3, os quais terão sua Portaria de Renovação de Reconhecimento automaticamente publicada no Diário Oficial da União (os cursos que obtiverem conceitos 1 e 2 terão que passar obrigatoriamente pela avaliação *in loco* para terem seu Reconhecimento Renovado).

Em relação ao ENADE, o artigo 5º da Lei nº 10.861 de 14 de Abril de 2004 (BRASIL, 2004) estipula que o mesmo é um componente curricular obrigatório dos cursos de graduação, no qual os discentes selecionados pelo INEP (Instituto Nacional de Pesquisas Educacionais Anísio Teixeira) para participarem do referido exame devem obrigatoriamente realizá-lo, como condição indispensável para sua colação de grau e emissão de histórico escolar. Diante disso, a PROGRAD efetua junto ao INEP a inscrição de todos os discentes habilitados a participarem do ENADE, os quais correspondem aos ingressantes (discentes que tiverem concluído entre 7% e 22% da carga horária mínima do currículo) e concluintes (discentes que integralizaram pelo menos 80% da carga horária mínima do currículo) do curso.

8.2. Avaliação e Acompanhamento no Âmbito do Colegiado de Curso

O acompanhamento e a avaliação do projeto de Engenharia de Computação da UFERSA serão feitos permanentemente pelo colegiado do referido curso, o qual, será composto por membros efetivos do corpo docente da instituição que estejam vinculados eixos de formação (básica, aos profissionalizante e específica) definidos neste PPC. Diante disso, a realização desse acompanhamento/avaliação será realizada utilizando seguinte а sistemática:

- A PROGRAD e o Colegiado de Curso organizam e implementam processos de avaliação, no intuito de identificar e analisar a qualidade do trabalho desenvolvido pelos docentes. Feito isso, a CPA (Comissão Permanente de Avaliação) produzirá instrumentos avaliativos a serem disponibilizados através do SIGAA (Sistema Acadêmico de Gestão de Atividades Acadêmicas), cujos resultados permitirão o planejamento de ações futuras que proporcionem a permanente qualificação do trabalho de formação universitária;
- A CPA (Comissão Permanente de Avaliação) diagnosticará as condições das instalações físicas, equipamentos, acervos e qualidade dos espaços de trabalho e encaminhará as solicitações de mudanças e adaptações necessárias aos órgãos competentes;

 O Colegiado de Curso organizará discussões e efetuará o acompanhamento da qualificação didático-pedagógica dos docentes, mediante levantamentos semestrais que permitam observar a produção e o investimento realizado pelos mesmos na socialização de pesquisas em diferentes espaços da comunidade.

8.3. Avaliação e Acompanhamento no Âmbito do Núcleo Docente Estruturante

O Núcleo Docente Estruturante (NDE) é regido pela Resolução CONAES Nº 01/2010 de 17 de junho de 2010 (MEC, 2010), que normatiza o Núcleo de Docente Estruturante, pelo Decreto nº 5773 do Ministério da Educação (BRASIL, 2006), que dispõe sobre o exercício das funções de regulação, supervisão e avaliação de Instituições de Educação Superior e cursos superiores de graduação e sequenciais no Sistema Federal de Ensino, e pela legislação interna descrita na resolução vigente.

Em termos funcionais, o NDE interage junto ao Colegiado de Curso (pedagógico, de ensino, de extensão, entre outros) no intuito de contribuir para a consolidação e efetivação de todos os aspectos descritos neste PPC. Sendo assim, o NDE deve atuar em diversas frentes, o que pode ser realizado através do cumprimento das seguintes atividades:

- Avaliação e proposição ao Colegiado de Curso acerca de eventuais alterações necessárias no PPC, no intuito de mantê-lo sempre atualizado e consoante às normas da UFERSA e as Diretrizes Curriculares Nacionais propostas para os cursos de graduação;
- Análise dos PGCC dos componentes curriculares associados ao curso e detecção de quais aspectos dos mesmos (ementa, bibliografia, entre outros) estão divergentes ao que está previsto neste PPC;
- Encaminhamento de propostas acerca de alterações necessárias nos PGCC ao Colegiado de Curso;
- Definição e proposição de mecanismos e itens de avaliação para o Colegiado de Curso, os quais podem auxiliar o NDE na verificação e

acompanhamento acerca do cumprimento de todas as dimensões presentes no perfil de egresso desejado.

8.4. Avaliação e Acompanhamento do Processo Ensino-Aprendizagem

Avaliação é um processo contínuo de pesquisas que visa interpretar os conhecimentos, habilidades e atitudes dos alunos, tendo em vista mudanças esperadas no comportamento, propostas nos objetivos, a fim de que haja condições de decidir sobre alternativas do planejamento do trabalho do professor e da universidade como um todo. Percebe-se, assim, que a avaliação não é um fim, mas um meio que permite verificar até que ponto os objetivos propostos estão sendo alcançados, identificando os discentes que necessitam de atenção individual e reformulando o trabalho com a adoção de procedimentos que possibilitem sanar as dificuldades identificadas. E consubstanciando-se nesse processo contínuo, ela não é algo que termine num determinado momento, embora possa ser estabelecido um tempo para realizá-la. A avaliação se desenvolve, nos diferentes momentos do processo ensino aprendizagem, com objetivos distintos. No início do processo temos a avaliação diagnóstica que é utilizada para verificar os conhecimentos que os alunos têm, bem como suas particularidades. Ao longo do processo de ensino-aprendizagem temos a avaliação formativa que tem uma função controladora. Seus propósitos são: informar o docente e o discente sobre o rendimento da aprendizagem e localizar as deficiências na organização do ensino. 155 No fim do processo de ensinoaprendizagem temos a avaliação somativa que tem uma função classificatória, isto é, classifica os alunos no fim de um semestre, ano, curso ou unidade, segundo níveis de aproveitamento. É importante levar em consideração que, embora utilizados como sinônimos, os conceitos de testar, medir e avaliar são distintos, sendo o de avaliar o mais amplo, pois inclui a utilização dos instrumentos quantitativos e se completa e se perfaz predominantemente através de dados qualitativos (observação casual, trabalhos de aula...) os quais se baseiam em julgamentos, descrições e opiniões. Para que a avaliação adquira a importância e eficácia que realmente tem no processo ensino-aprendizagem, é necessário

estabelecer com clareza o que vai ser avaliado, estabelecer os critérios e as condições para a avaliação, selecionar técnicas adequadas e variá-las e aferir os resultados. Existem várias técnicas e vários instrumentos de avaliação como o pré-teste, a ficha de observação, exercícios, pesquisas, provas objetivas, provas subjetivas, as quais devem estar de acordo com a habilidade que se deseja verificar (conhecimento, compreensão, aplicação, análise, síntese). O essencial é que o docente (avaliador) tenha clareza dos seus objetivos avaliativos para utilizar essa ferramenta a serviço da eficácia do processo ensino aprendizagem (PILETTI, 2004).

O processo de avaliação está diretamente relacionado com o processo relativo à aprendizagem, e acompanha todo o processo educativo, sendo assim necessário verificar o desenvolvimento, a fim de observar sua evolução e dificuldades. Devido à indissociabilidade do acompanhamento e retorno do processo de aprendizagem com o nível de aprendizagem alcançado pelos discentes, o processo de avaliação é um aspecto qualitativo no processo de ensino-aprendizagem. Assim, a avaliação do processo de aprendizagem deverá representar um aspecto qualitativo da avaliação dentro do quantitativo, considerando que ambos os aspectos fazem parte da formação do aluno. Também se deve considerar que a avaliação é uma ferramenta que interfere diretamente com as diretrizes previstas no Projeto Pedagógico do Curso. O processo de aprendizagem e desempenho do discente é verificado pelo docente por meio de mecanismos definidos no Regimento Geral da Instituição e da Pró-Reitoria de Graduação. O docente do curso deve utilizar os pilares do ensino, pesquisa e extensão para ensinar e avaliar o discente quanto ao conhecimento que lhe é apresentado. A concepção acadêmica do Projeto Pedagógico de Engenharia de Computação se norteia por um processo de ensino e aprendizagem que tem como objeto de seus componentes curriculares, a prática como intenção de convergência de conteúdos conceituais, críticos, analíticos e propositivos resultando na consolidação de competências e habilidades, onde o discente é o agente protagonista deste processo. Com relação à avaliação devese refletir sobre as experiências e conhecimentos disseminados ao longo do processo de formação profissional e a contextualização regional. Para tanto, deve ser executado um Programa de Autoavaliação em conjunto com o Programa de Avaliação Institucional, e o Projeto Pedagógico Institucional da UFERSA. Deverão ser observados os processos de formação do profissional, a formação acadêmica e a inserção no mercado de trabalho. Este processo envolverá professores, alunos e gestores acadêmicos. O processo de aprendizagem e desempenho discente é verificado por meio dos mecanismos constantes do Regimento Geral da Instituição e da Pró-Reitoria de Graduação. A avaliação de aprendizagem será realizada de acordo com o Regimento vigente na Instituição, que trata da verificação da aprendizagem e da assiduidade. A avaliação do ensino pode ser realizada a partir da aplicação de questionários, em consonância com o Programa de Avaliação Institucional. De acordo com o Regimento Geral da UFERSA, a avaliação do rendimento acadêmico do aluno do curso de graduação é feita por componente curricular, abrangendo os critérios de assiduidade e verificação de aprendizagem. A estratégia pedagógica adotada consiste fundamentalmente em ensino fundamentado por meio de aulas teóricas expositivas e/ou práticas, por meio de desenvolvimento de atividades de campo e/ou laboratoriais, visando uma melhor compreensão e fixação do conhecimento ministrado.

8.5. Critérios de Avaliação

Com relação aos critérios de avaliação, têm-se, como referência o Regimento Geral da UFERSA e a resolução CONSEPE Nº 004/2018, onde a avaliação do rendimento escolar do aluno do curso de graduação é feita por componente curricular, abrangendo os critérios de assiduidade e verificação de aprendizagem.

9. REFERÊNCIAS BIBLIOGRÁFICAS

- Resolução CONSEPE/UFERSA N ° 004/2018 de 13 de setembro de 2018.
 Avaliação da Aprendizagem nos cursos de graduação na modalidade presencial da Universidade Federal Rural do Semi-Árido (UFERSA).
- EMENDA. Emenda Regimental Nº 12, de 11 de fevereiro de 2015. Emenda ao Regimento Geral da UFERSA. Disponível em: https://documentos.ufersa.edu.br/wp-content/uploads/sites/79/2014/09/EMENDA-REGIMENTAL-N%C2%BA-12-de-11-de-fevereiro-de-2015.pdf>. Acesso em: 13 de março de 2017.
- 3. BRASIL. Lei n. 9.394, de 20 de dezembro de 1996. Estabelece as diretrizes e bases da educação nacional. Diário Oficial da República Federativa do Brasil, Poder Legislativo, Brasília, DF, 23 dez. 1996. p. 27833. Disponível em: http://www6.senado.gov.br/legislacao/ListaTextoIntegral.action?id=75723
- MEC. Referenciais Curriculares Nacionais dos Cursos de Bacharelado e Licenciatura. Brasília, 2010.
- CAMPOS, L.C., Aprendizagem Baseada em projetos: uma nova abordagem para a Educação em Engenharia. In: COBENGE 2011, Blumenau, Santa Catarina, 3 a 6/10/2011.
- 6. COLL, C. S., (1994). **Aprendizagem escolar e construção do conhecimento**. Porto Alegre: Artes Médicas.
- DELISLE, R. Como realizar a Aprendizagem Baseada em Problemas. Porto: ASA, 2000.
- 8. LEITE, L.; AFONSO, A. **Aprendizagem baseada na resolução de problemas. Características, organização e supervisão**. Boletim das Ciências, 48, p. 253-260, 2001.155.

- LEITE, L.; ESTEVES, E. Ensino orientado para a Aprendizagem Baseada na Resolução de Problemas na Licenciatura em Ensino da Física e Química. In: Bento Silva e Leandro Almeida (Eds.). Comunicação apresentada no VIII Congresso Galaico-Português de Psicopedagogia. Braga: CIED - Universidade do Minho, p. 1751-1768, 2005.
- LOPES, M. C. L. P; SALVAGO, B. M.; PISTORI, J.; DORSA, A. C.; ALMEIDA, D. T. R. Educação à distância no ensino superior: uma possibilidade concreta de inclusão social. Rev. Diálogo Educ., Curitiba, v. 10, n. 29, p. 191-204, jan./abr. 2010.
- 11. MARKHAM, T., LARMER, J., RAVITZ, J., Aprendizagem Baseada em Projetos, Artmed Editora S/A, Porto Alegre, 2008.
- 12. MORAN, José Manuel. Os modelos educacionais na aprendizagem on-line. Site pessoal do autor, São Paulo, artigo atualizado em 2007. Disponível em: < http://www.eca.usp.br/prof/moran/site/textos/educacao_online/modelos.pdf >. Acesso em: 17 de dezembro de 2018.
- 13. MORÁN, JOSÉ. Coleção Mídias Contemporâneas. Convergências Midiáticas, Educação e Cidadania: aproximações jovens. Vol. II Carlos Alberto de Souza e Ofelia Elisa Torres Morales (orgs.). PG: Foca Foto-PROEX/UEPG, 2015.
- 14. Parecer CNW/CES N° 153/2008 de 07/08/2008. Consulta sobre a carga horária mínima do curso de Engenharia da Computação. Disponível em: http://portal.mec.gov.br/cne/arquivos/pdf/2008/pces153_08.pdf.
- Projeto Pedagógico do Curso de Bacharelado em Ciência e Tecnologia.
 Universidade Federal Rural do Semi-Árido (UFERSA). Mossoró RN, 2010.
- Projeto Pedagógico do Curso de Bacharelado em Sistemas de Informação.
 Universidade Federal Rural do Semi-Árido (UFERSA). Angicos RN, 2010.
- 17. **Projeto Pedagógico do Curso de Ciência de Computação.** Universidade Federal Rural do Semi-Árido (UFERSA). Mossoró RN, junho de 2009.

- Projeto Pedagógico do Curso de Engenharia de Computação. Universidade
 Federal do Rio Grande do Norte (UFRN). Natal RN, março de 2011.
- Projeto Pedagógico do Curso de Licenciatura em Computação e Informática.
 Universidade Federal Rural do Semi-Árido (UFERSA). Angicos RN, 2010.
- 20. Resolução CONSEPE/UFERSA N ° 01/2008 de 17 de abril de 2008. **Atividades**Complementares nos Cursos de Graduação da UFERSA.
- 21. Resolução CONSEPE/UFERSA № 004/2017 de 15 de maio de 2017. Colegiado de Curso de Graduação da UFERSA.
- 22. Resolução CONSEPE/UFERSA Nº 001/2013, de 14 de março de 2013. **Normas** gerais relativas aos Trabalhos de Conclusão de Curso da UFERSA.
- 23. Resolução CONSEPE/UFERSA Nº 012/2013, de 17 de setembro de 2013. Normas gerais relativas à oferta de disciplinas na modalidade à distância nos cursos de graduação presenciais da UFERSA.
- 24. Projeto de Desevolvimeto Institucional 2015/2020, Universidade Federal Rural do Semi- Árido, Mossoró, 2015.
- 25. **Projeto Pedagógico Institucional**, 2019, Universidade Federal Rural do Semi-Árido, Mossoró, 2019.
- 26. UFERSA. Resolução CONSEPE/UFERSA Nº 009/2010, de 21 de outubro de 2010b. Dispõe sobre o Núcleo Docente Estruturante NDE na UFERSA. Disponível em: http://www2.ufersa.edu.br/portal/view/uploads/setores/83/arquivos/consepe/2010/

RESOLUCOES/RESOLUCAO_CONSEPE_009_2010.pdf >. Acesso em: 13 de marco de 2017.

- 27. UFERSA. Resolução CONSUNI/UFERSA № 010/2007, de 17 de dezembro de 2007. Regimento Geral da UFERSA, alterado pela emenda № 12, de 11 de fevereiro de 2015. Disponível em: https://documentos.ufersa.edu.br/regimento-geral/>. Acesso em: 12 mar. 2017.
- 28. UFERSA, Resolução CD n. 26, de 06 de dezembro de 1999 e suas alterações.
- 29. INEP. **Sistema Nacional de Avaliação da Educação Superior SINAES**, (2015a). Disponível em: http://portal.inep.gov.br/sinaes. Acesso em: 12 mar. 2017.
- 30. INEP. **Exame Nacional de Desempenho de Estudantes Enade**, (2015b). http://portal.inep.gov.br/enade>. Acesso em: 12 mar. 2017.
- 31. BRASIL. Lei n. 10.861, de 14 de abril de 2004. Institui o Sistema Nacional de Avaliação da Educação Superior SINAES e dá outras providências. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.861.htm. Acesso em: 12 mar. 2017.
- 32. MEC. Portaria Normativa n. 4 de 05 de agosto de 2008. Regulamenta a aplicação do conceito preliminar de cursos superiores, para fins dos processos de renovação de reconhecimento respectivos, no âmbito do ciclo avaliativo do SINAES instaurado pela Portaria Normativa nº 1, de 2007. Diário Oficial da União, n. 150, Brasília, DF, 06 ago. 2008. Disponível em: < http://download.inep.gov.br/download/superior/condicoesdeensino/Portaria_N_4_d e_5_de_agosto_2008.pdf>. Acesso em: 12 mar. 2017.
- 33. MEC. Resolução n. 01, de 17 de junho de 2010. Normatiza o Núcleo Docente Estruturante e dá outras providências. CONAES Comissão Nacional de Avaliação da Educação Superior. Disponível em: http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=6 885-resolucao1-2010-conae&category_slug=outubro-2010-pdf&Itemid=30192>. Acesso em: 12 mar. 2017.

- 34. MEC. Resolução n. 01, de 24 de abril de 2019. Institui as diretrizes curriculares nacionais do curso de graduação em engenharia. Conselho Nacional de Educação/Câmara de Educação Superior. Disponível em: http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=11 2681-rces002-19&category_slug=abril-2019-pdf&Itemid=30192. Acesso em 18 dez 2020.
- 35. MEC. **Resolução n. 01, de 26 de março de 2021.** Institui as diretrizes curriculares nacionais dos cursos de graduação de engenharia, arquitutra e urbanismo. Conselho Nacional de Educação/Câmara de Educação Superior. Disponível em: https://www.in.gov.br/web/dou/-/resolucao-n-1-de-26-de-marco-de-2021-310886981. Acesso em 12 jun 2021.
- 36. BRASIL. **Decreto n. 5.773, de 9 de maio de 2006**. Dispõe sobre o exercício das funções de regulação, supervisão e avaliação de instituições de educação superior e cursos superiores de graduação e seqüenciais no sistema federal de ensino. Disponível em:https://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2006/Decreto/D5773.htm. Acesso em: 12. mar. 2017.
- 37. ECOP. Il Encontro de Computação do Oeste Potiguar, 2017.
- 38. CNPQ. Grupo de Desenvolvimento e Simulação. Diretório dos Grupos de Pesquisa. Disponível em: <dgp.cnpq.br/dgp/espelhogrupo/3781450708031384>. Acesso em: 12 mar. 2017.